- 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
点云SLAM
算法图形图像处理算法opencv图像处理与计算机视觉算法直线提取检测目标检测霍夫变换算法
霍夫变换(HoughTransform)是一种经典的图像处理与计算机视觉算法,广泛用于检测图像中的几何形状,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将形状检测问题转化为参数空间中的峰值检测问题。一、霍夫变换基本思想输入:边缘图像(如经过Canny边缘检测)输出:一组满足几何模型的形状(如直线、圆)关键思想:图像空间中的一个点→参数空间中的一个曲线参数空
- 数字孪生技术为UI前端注入新活力:实现产品设计的沉浸式体验
ui设计前端开发老司机
ui
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“平面交互”到“沉浸体验”的UI革命当用户在电商APP中翻看3D家具模型却无法感知其与自家客厅的匹配度,当设计师在2D屏幕上绘制汽车内饰却难以预判实际乘坐体验——传统UI设计的“平面化、静态化、割裂感”
- 【证明】对极几何:本质矩阵内在性质
Powerful_QI
slam线性代数矩阵
--这是目录--1.本质矩阵内在性质表述2.预备知识2.1线性代数基础2.1.1奇异值与特征值的关系2.1.2矩阵加减单位阵后特征值的变化2.2引理:一个常用的矩阵变换3.证明1.本质矩阵内在性质表述 本质矩阵(EssentialMatrix)EEE是一个3阶方阵,满足E=t∧RE=t^{\land}RE=t∧R其中RRR为旋转矩阵,ttt为平移量,t∧t^{\land}t∧运算定义如下(参考了
- 蓝桥杯2023年第十四届省赛真题-岛屿个数
撰卢
蓝桥杯算法职场和发展
目录题目题目描述输入格式输出格式样例输入样例输出思路:两次DFS(染色法+合并)-Dotcpp编程社区代码:题目题目描述小蓝得到了一副大小为M×N的格子地图,可以将其视作一个只包含字符‘0’(代表海水)和‘1’(代表陆地)的二维数组,地图之外可以视作全部是海水,每个岛屿由在上/下/左/右四个方向上相邻的‘1’相连接而形成。在岛屿A所占据的格子中,如果可以从中选出k个不同的格子,使得他们的坐标能够组
- 资源分享-FPS, 矩阵, 骨骼, 绘制, 自瞄, U3D, UE4逆向辅助实战视频教程
小零羊
矩阵3due4
文章底部获取资源教程概述本视频教程专为游戏开发者和安全研究人员设计,涵盖FPS游戏设计、矩阵运算、骨骼绘制、自瞄算法、U3D和UE4逆向辅助等实战内容。通过102节详细视频教程,您将掌握从基础到高级的游戏开发与安全防护技能。教程内容1.FPS类型游戏的设计研究和游戏安全,反外挂研究2.二维向量和平面距离3.atan2和tan4.三维向量和空间距离5.补充向量乘法6.矩阵和矩阵的运算7.矩阵的特性8
- Python应用:实现三角形类型判断
Mikhail_G
python开发语言
大家好!在几何计算和图形处理中,判断三条边能否构成三角形以及确定其类型是常见需求。Python通过简洁的条件判断即可实现这些功能,下面我们逐步解析实现原理并提供扩展功能。一、三角形判断的核心原理三角形不等式定理:判断能否构成三角形:a+b>c\quad(且)\quada+c>b\quad(且)\quadb+c>a其中a、b、c为三条边的长度。任意两边之和必须大于第三边是构成三角形的充要条件。代码呈
- 【EGSR2025】材质+扩散模型+神经网络相关论文整理随笔(四)
Superstarimage
文献随笔材质神经网络人工智能扩散模型
AnevaluationofSVBRDFPredictionfromGenerativeImageModelsforAppearanceModelingof3DScenes输入3D场景的几何和一张参考图像,通过扩散模型和SVBRDF预测器获取多视角的材质maps,这些maps最终合并成场景的纹理地图集,并支持在任意视角、任意光照条件下进行重新渲染。样例图如下:在当前时代的技术背景下,生成与几何匹配
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 【常见滤波器】PCL 模型滤波器
PCL模型滤波器-几何模型驱动的点云处理技术目录模型滤波器核心概念⚙️PCL模型滤波器架构基础模型滤波器实践高级模型滤波技术模型拟合精度优化️工业应用案例调试与可视化⚡️性能优化策略模型滤波器核心概念模型滤波的本质模型滤波器通过拟合几何模型并评估点云与模型的贴合度,实现对点云的过滤和处理。不同于基础的空间滤波器,模型滤波器能够识别并利用点云的底层几何结构信息。在阈值内超出阈值输入点云模型识别与拟合
- 什么是点云?怎么实现点云扫描?
zhongqu_3dnest
点云点云扫描点云建模三维空间激光扫描技术
什么是点云?点云是一种数据集,其中包含大量代表物体表面几何形状的点。这些点通过测量仪器获取,通常使用三维坐标测量机、三维激光扫描仪或照相式扫描仪等设备。每个点由X、Y、Z坐标和一个强度值组成,这个强度值通常反映了物体表面反射率返回信号的强度。当这些点被组合在一起时,就形成了一个点云,即空间中代表3D形状或对象的数据点集合。点云是3D扫描和3D建模过程中的直接数字输出,可以用于创建高度精确的3D模型
- 【氮化镓】p-GaN栅极退化的温度和结构相关性
北行黄金橘
氮化镓器件可靠性人工智能机器学习学习科学研究科技
论文总结:本文献深入研究了带有p-GaN栅极的正常关断型(normally-off)高电子迁移率晶体管(GaN-HEMTs)在恒定电压应力下的时序退化行为。通过直流特性分析和温度依赖性分析,研究了故障时间(TTF)与应力温度和器件几何结构的依赖性。结果显示,p-GaN栅极晶体管在7.2V的栅偏压下可达到20年的使用寿命,表明了良好的稳定性。故障时间与应力电压呈指数关系,且退化主要发生在栅极边缘而非
- 【力扣(LeetCode)】数据挖掘面试题0003: 356. 直线镜像
文章大纲题目描述**坐标变化规律**解题方案题目描述在一个二维平面空间中,给你n个点的坐标。问,是否能找出一条平行于y轴的直线,让这些点关于这条直线成镜像排布?平行于y轴的直线(即垂直于x轴的直线,其方程形式为(x=a),其中(a)为常数)的对称点具有以下显著特点:坐标变化规律设直线为(x=a),平面内任意一点(P(x,y))关于该直线的对称点为(P’(x’,y’)),则两者坐标满足:纵坐标不变:
- 玛哈特网板矫平机:精密矫平金属开平板的利器
MAHATMA玛哈特
矫平机校平机开平机大数据制造
在金属板材加工领域,尤其是针对卷材开平后的“开平板”(俗称“网板”),为了获得高精度的平面度和优异的机械性能,矫平工序至关重要。网板矫平机(也称为开平板矫平机、整平机)正是为完成这一核心任务而设计的专业化设备。它是连接卷材开卷线与后续剪切、冲压、折弯等工序的关键桥梁,对最终产品的质量起着决定性作用。一、何为“网板”?——理解矫平的对象定义:“网板”是金属加工行业对开平板的俗称。它是指将成卷的金属带
- 坐标变化其二 前缀和
black_blank
csp算法开发语言c++
202309-2试题名称:坐标变换(其二)时间限制:2.0s内存限制:512.0MB问题描述:问题描述对于平面直角坐标系上的坐标(,),小P定义了如下两种操作:拉伸倍:横坐标变为,纵坐标变为;旋转:将坐标(,)绕坐标原点(0,0)逆时针旋转弧度(0≤后可使用三角函数cos()和sin()。Python:直接使用print(x)即可输出浮点数x;frommathimportcos,sin后可使用相应
- 重读Cesium(七):Primitive自定义几何并设置法线
GIS肆月
重读CesiumCesium功能集webgljavascript3d
在上一篇文章中,我们已经大致的了解了Primitive几何类型,我们发现,Cesium自带的Geometry类型已经很丰富了,但有时候也避免不了需要定义自己的Geometry类型。对于自定义的Geometry类型,我们可以通过newCesium.Geoemtry(options)类去构造实现1.attributes类:一个GeometryAttributes对象,每个顶点属性都存储在这个对象中,顶
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- k8s深度讲解----宏观架构与集群之脑 - API Server 和 etcd
weixin_42587823
云原生kubernetes架构etcd
宏观架构与集群之脑-APIServer和etcd宏观架构:数据中心的操作系统在开始之前,让我们先建立一个高层视角。你可以将Kubernetes想象成一个管理整个数据中心的分布式操作系统。在这个操作系统中:控制平面(ControlPlane)就是它的“内核”,负责管理和决策。工作节点(WorkerNodes)就是它的“CPU和内存”,是真正运行应用程序的地方。我们常用的kubectl就是与这个“内核
- 第十五届蓝桥杯嵌入式客观题真题(第二场)(个人错点总结)
lo卖火柴的小熊猫
电子相关竞赛分享蓝桥杯职场和发展嵌入式硬件
题目忘记拷贝了--,回忆到的写一下1.常见放大器的功能有(ABCD)A.放大B.滤波C.振荡D.比较X.stm32的ADC功能描述正确的是(ABCD)A.自校准B.12位采样精度C.单/多采集设置D.软件设置左靠右靠数据阵列X.RS485旁路的对称电阻作用.(D)A.B.静电保护C.防止浪涌D.防止信号反射X.BUCK电路的电平转换功能(D)A.AC/ACB.AC/DCC.DC/ACD.DC/DC
- 大一新生第一次参加蓝桥杯(C/C++组),只学C够吗?怎么备赛?个人经验分享
老虎0627
蓝桥杯
个人感受(唠叨唠叨)我是2023级的物联网工程专业的一名大一新生,在大一的下半学期有幸通过校赛,参加了第十五届蓝桥杯软件赛,其实我自己都没想到大一就能参加蓝桥杯,因为当时只会C语言,也很迷茫,到底该怎么备赛?剩的时间比较少到底要不要学习C++。到底要不要学C++?我在蓝桥杯正式比赛前特别纠结要不要学c++,因为当时省的时间比较少,而且会有担心学c++的一些语法会不会把它跟c语言搞混,到时候在考场忘
- 计算机模拟双缝干涉实验报告,电磁场与微波实验三报告——双缝干涉实验.docx...
weixin_39605840
计算机模拟双缝干涉实验报告
《电磁场与微波实验三报告——双缝干涉实验.docx》由会员分享,提供在线免费全文阅读可下载,此文档格式为docx,更多相关《电磁场与微波实验三报告——双缝干涉实验.docx》文档请在天天文库搜索。1、双缝干涉实验1.实验原理如右图所示,当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源。由同一波源到达两缝后所发出的次级波是相干波,因此在金属板后面的空间中将产生干涉现象。当然,
- Android 和 IOS 应用程序之间的 UI 设计差异_ios与安卓ui设计规范区别
2301_79985012
程序员androidiosui
Apple规则内容从一开始就很高兴,这可以帮助客户毫无问题地浏览页面。此外,尽管Android标题放在左侧,但iOS标题通常会被重点关注。MaterialDesign可以被视为平面设计的改进,带有一点拟物化。基本点是制作一个为世界升级但由实际单词动画的UI,以使其对用户/客户直观。对于Android设计,您可以参考材料设计指南、组件和图标。苹果使用“扁平化设计”。它基于三个主题——清晰、顺从和深度
- 蓝桥杯C++组算法知识点整理 · 考前突击(上)【小白适用】
南星六月雪
C++学习笔记南星六月雪的手札c++蓝桥杯开发语言算法数据结构
【背景说明】本文的作者是一名算法竞赛小白,在第一次参加蓝桥杯之前希望整理一下自己会了哪些算法,于是有了本文的诞生。分享在这里也希望与众多学子共勉。如果时间允许的话,这一系列会分为上中下三部分和大家见面,祝大家竞赛顺利!【文风说明】本文主要会用代码+注释的方式来解释内容。相信学过编程的人都会发现程序比长篇大论更易理解!目录一、语言基础1.1编程基础1.2竞赛常用库函数1.2.1sort函数1.2.2
- 第十五届蓝桥杯C++B组国赛题解+复盘总结
Savior`L
蓝桥杯蓝桥杯c++
文章目录1、合法密码2、选数概率3、蚂蚁开会4、立定跳远5、最小字符串6、数位翻转7、数星星8、套手镯9、挑石头10、最长回文前后缀总结本人目标是国一,昨天模拟做了一遍,结果如下图,这水平感觉远远不够。现在已经全部补完,发现了许多问题,好多该得到的分数没有得到,总结记录一下。1、合法密码赛时暴力枚举,官方正解是把非字母非数字算作字符,这点与我的想法一致,但是代码就是写错了,在数字处忘记contin
- 【蓝桥杯选拔赛真题98】Scratch扑克牌排序 第十五届蓝桥杯scratch图形化编程 少儿编程创意编程选拔赛真题解析
小兔子编程
scratch扑克牌scratch蓝桥杯题目scratch蓝桥杯真题第十五届蓝桥杯scratch题scratch扑克牌排序scratch排序scratch案例
目录scratch扑克牌排序一、题目要求编程实现二、案例分析1、角色分析2、背景分析3、前期准备三、解题思路1、思路分析2、详细过程四、程序编写五、考点分析六、推荐资料1、入门基础2、蓝桥杯比赛3、考级资料4、视频课程5、python资料scratch扑克牌排序第十五届青少年蓝桥杯scratch编程选拔赛真题解析一、题目要求编程实现1)点击绿旗,在舞台上出现4张点数不同的扑克牌,牌上的点数是随机的
- 蓝桥杯51单片机设计
#矩阵键盘#①IO线与关系思考,俩个引脚:一个输入高电平一个输入低电平,当俩者接到一起他们的点评情况是什么?单片机IO口内部等效图②矩阵键盘原理判断按键按下的原理:如果未按下时俩个引脚的电平不一样(一高一低),则按下时高电平的引脚为低电平,我们只需要检测高电平引脚是否变为低电平就可以判断按键是否被按下(总结:发生变化的总是高电平的引脚)③矩阵键盘逐行扫描法先让第一行按键的公共引脚为低电平,第二行到
- 蓝桥杯 2n皇后问题
cccyi7
深度优先搜索蓝桥杯c++深度优先搜素回溯
题目描述样例输入:思路本题考查的是深度优先搜索+回溯。对比N皇后的问题,此题需要在N皇后的基础上再放一个皇后,且条件也要符合皇后在棋盘上的规则,所以我们可以先深搜去放黑皇后,每放一个黑皇后给当前棋盘对应的位置标志为2(2代表黑皇后),所以dfs就需要一个标志代表当前是深搜放黑皇后还是白皇后,我们用flag来表示。2表示黑皇后,3表示白皇后。N皇后的基本解法是,我们暴力枚举,我们可以试一试第一行的第
- 高德地址 AMap.GeoJSON解析geoJson并画出区域图 画出区域图标记出名称 获取地图的坐标
古怪今人
应用功能前端
GeoJSONGeoJSON一种用于编码各种地理数据结构的数据。GeoJSON对象可以表示几何、特征或特征集合。GeoJSON支持以下几何类型:点(Point)、线(LineString)、面(Polygon)、多点(MultiPoint)、多线(MultiLineString)、多面(MultiPolygon)和几何集合(GeometryCollection)。GeoJSON中的功能包含几何对象
- serviceMesh 学习
一切顺势而行
service_mesh学习java
根据您已掌握的Docker、Kubernetes及灰度发布等技能,以下是ServiceMesh需要重点掌握的知识体系,分为核心概念、关键技术、实践场景和进阶能力四部分,助您系统化掌握服务网格:一、ServiceMesh核心概念概念说明与K8s的关联数据平面Sidecar代理(如Envoy),拦截服务间流量通过sidecar-injector自动注入到Pod中控制平面管理Sidecar的组件(如Is
- 生成式人工智能认证(GAI认证)含金量怎么样?
技能咖
GAI认证生成式人工智能认证人工智能
当生成式人工智能(GenerativeAI)的浪潮以摧枯拉朽之势重塑职业版图时,一个尖锐的问题正悬在无数人的心头:在技术迭代比眨眼更快的时代,如何证明自己具备驾驭AI的核心能力?这场认知革命的背后,一张认证证书的价值早已超越了纸面——它既是个人能力的“信用背书”,也是企业筛选人才的“技术密码”。而生成式人工智能认证(GAI认证)的诞生,恰似一把打开未来之门的密钥,其含金量究竟几何?答案藏在三个维度
- 直线插补动画引擎:从数学原理到C#实现——用代码绘制动态几何艺术
墨夶
C#学习资料c#算法开发语言
一、直线插补核心算法解析1.1DDA算法数学原理//////DDA算法实现直线插补///publicclassLineInterpolator{privatePointF_currentPoint;privatePointF_endPoint;privatefloat_stepSize;privatefloat_dx,_dy;privatefloat_xIncrement,_yIncrement;
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持