解决cannot reshape array of size 3920000 into shape (100,28,28,1)

出现这个错误是因为3920000不等于100*28*28*1
所以只要把100改成5000就行了。
如果你编的程序和我一样,那么相关代码可以这么写
mnist.validation.images.shape[0]就是5000

        x = tf.compat.v1.placeholder(tf.float32,
                                     [mnist.validation.images.shape[0], mnist_inference_Lenet5_update.IMAGE_SIZE,
                                      mnist_inference_Lenet5_update.IMAGE_SIZE,
                                      mnist_inference_Lenet5_update.NUM_CHANNELS]
                                     , name='x-input')
        y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference_Lenet5_update.OUTPUT_NODE], name='y-input')

        xs = mnist.validation.images
        reshaped_xs = np.reshape(xs, (
        mnist.validation.images.shape[0], mnist_inference_Lenet5_update.IMAGE_SIZE, mnist_inference_Lenet5_update.IMAGE_SIZE,
        mnist_inference_Lenet5_update.NUM_CHANNELS))

        validate_feed = {x: reshaped_xs, y_: mnist.validation.labels}

        y = mnist_inference_Lenet5_update.inference(x, False, None)

你可能感兴趣的:(机器学习,tensorflow,机器学习,神经网络)