- 位图思想详解:用一个小小的比特征服整个世界
Joseit
优选算法java算法
位图思想详解:用一个小小的比特征服整个世界一、什么是位图?二、位图的形象理解三、位图的Java实现四、位图的算法原理剖析五、实际应用案例:网站用户活跃度统计五、真实的应用场景:布隆过滤器的基础六、算法题:判断字符是否唯一(easy)一、什么是位图?位图是一种超级节省空间的数据结构,他利用二进制位(0/1)来表示某个元素是否存在或某种状态是否为真。想象一下,用一个小小的比特位就能记录一个信息,这简直
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- 05.列表标签
龙哥带你学编程
#htmlcss
一、列表简介列表是网页中最常用的一种数据排列方式。有序列表:有先后顺序之分无序列表:无先后顺序之分定义列表:带有特殊含义的列表二、有序列表1、语法格式有序列表中的各个列表项是有顺序的…列表项列表项注意:ol和li是配合一起使用的,不可以单独使用;ol的子标签只能是li标签,不能是其他标签。2、基本特征有序列表是由有顺序的列表项组成的有序列表一般采用数字或字母作为顺序,默认采用数字顺序是块元素独占一
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- 重塑家用机器人大脑!云鲸旗舰机型逍遥002搭载旭日5正式开售
量子位
2025年3月20日,全球家庭清洁机器人明星品牌云鲸智能携最新一代旗舰机型——云鲸逍遥002,亮相中国家电及消费电子博览会(AWE)。该产品以”AI智能深度清洁“为核心,基于地瓜机器人全新一代旭日5智能计算芯片,推出首创的双目AI视觉感知自适应系统,以10TOPs的端侧算力与180万点/秒的3D稠密深度点云生成能力,为家庭场景带来毫米级障碍测距精度与语义级环境理解,是家庭清洁机器人智能化演进的又一
- “三分钟”带你看懂批次管理!(一)
wms系统
一、批次管理的定义与重要性1.批次管理的定义:批次管理是一种针对产品或物料的管理方法,它将同一生产周期或相同条件下生产、具有一致质量特征、生产信息和使用属性的产品组作为一个批次,进行分类、标识、追踪和管理。2.批次管理的重要性:提高可追溯性:精准追踪物料和产品的来源、去向及生命周期,在质量问题或召回需求出现时,能快速锁定问题批次,降低损失。增强质量控制:监控不同批次产品的质量指标,及时发现和分析质
- 栈和队列基础
Luther coder
算法
目录一.队列简述二.栈三.例题一.队列简述队列多用于辅助,很少有单独的题目。例如图的BFS,需要队列辅助实现。常见运用:单调队列:概念和单调栈类似。应用很少,多用于对一些算法的优化(动态规划等),不再赘述。优先队列:普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出的特征。基于堆(
- 学习111
麋鹿叔叔
学习
项目名称项目简介主要功能技术原理GitHub地址browser-use智能浏览器工具,让AI像人类一样操作浏览器,实现网页自动化网页浏览与操作、多标签页管理、视觉识别与内容提取、操作记录与重复执行、自定义动作支持、主流LLM模型支持为大语言模型服务的创新Python工具库GitHubEkoFellouAI推出的生产就绪型JavaScript框架,基于自然语言驱动创建智能代理支持所有平台,提供统一便
- 毕业论文代码实验(Python\MATLAB)基于K-means聚类的EMD-BiLSTM-Attention光伏功率预测模型
清风AI
毕业设计代码实现pythonlstm深度学习神经网络人工智能matlabpytorch
一、项目背景1.1光伏功率预测意义在能源结构转型背景下(国家能源局2025规划),光伏发电渗透率已超过18%。但受天气突变、云层遮挡等因素影响,光伏出力具有显著波动性,导致:电网调度难度增加(±15%功率波动)电力市场交易风险提升光储协同控制效率降低1.2技术挑战多尺度特征耦合:分钟级辐照度变化与小时级天气模式共存非线性映射关系:气象因素与发电功率呈高阶非线性关系数据模态差异:数值天气预报(NWP
- CSS特效花样鼠标悬停效果
DTcode7
HTML网站开发#前端基础入门三大核心之CSSHTMLCSSwebcss3网页开发
CSS特效花样鼠标悬停效果鼠标悬停效果概述基本概念与作用示例一:基本的颜色变化代码解释示例二:渐变背景色代码解释示例三:放大与阴影效果代码解释示例四:文字提示代码解释示例五:旋转和翻转代码解释实际工作中的使用技巧在现代Web开发中,良好的用户体验往往意味着不仅仅要有一个功能完备的应用程序,还需要具备吸引人的视觉效果。鼠标悬停效果便是提升网站交互性和吸引力的一种常见方式。本文将探讨如何运用CSS来实
- YOLO算法全面改进指南(二)
niuTaylor
YOLO改进YOLO算法
以下是为YOLO系列算法设计的系统性改进框架,结合前沿技术与多领域创新,提供可支持高水平论文发表的详细改进思路。本方案整合了轻量化设计、多模态融合、动态特征优化等创新点,并给出可验证的实验方向。一、多模态提示驱动的开放场景检测系统1.核心创新三模态提示机制:文本提示编码器:基于RepRTA(可重参数化区域文本对齐)构建轻量级文本编码网络,将自然语言描述映射为128维语义向量。视觉提示编码器:采用S
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 使用Seaborn库中的`violinplot`函数绘制水平小提琴图(Violin Plot)是一种常见的数据可视化方法
code_welike
信息可视化数据分析数据挖掘Python
使用Seaborn库中的violinplot函数绘制水平小提琴图(ViolinPlot)是一种常见的数据可视化方法。水平小提琴图可以展示数据的分布特征,并可以对比不同组别之间的差异。本文将介绍如何使用Python和Seaborn库绘制水平小提琴图,并提供相应的源代码示例。首先,我们需要确保已经安装了Seaborn库。可以使用以下命令在Python中安装Seaborn:pipinstallseabo
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- HCIA-AI人工智能笔记3:数据预处理
噗老师
华为认证人工智能笔记wpf数据处理AI华为认证
统讲解数据预处理的核心技术体系,通过Python/Pandas与华为MindSpore双视角代码演示,结合特征工程优化实验,深入解析数据清洗、标准化、增强等关键环节。一、数据预处理技术全景图graphTDA[原始数据]-->B{数据清洗}B-->B1[缺失值处理]B-->B2[异常值检测]B-->B3[重复值删除]A-->C{特征工程}C-->C1[标准化/归一化]C-->C2[离散化分箱]C--
- Android Compose 线性布局(Row、Column)源码深度剖析(十)
&有梦想的咸鱼&
AndroiodCompose原理Android开发大全android
AndroidCompose线性布局(Row、Column)源码深度剖析一、引言在Android应用开发的领域中,UI布局是构建用户界面的核心工作之一。良好的布局设计不仅能提升用户体验,还能使应用在不同设备上保持一致的视觉效果。随着Android开发技术的不断演进,JetpackCompose作为新一代的声明式UI框架应运而生。它以简洁的代码、高效的性能和强大的可维护性,逐渐成为开发者的首选。线性
- 网页版 123 分身数字人源码搭建,OEM贴牌
18538162800=余
音视频矩阵
在数字化时代的浪潮下,数字人技术蓬勃发展,网页版123分身数字人源码搭建为众多开发者和企业提供了实现个性化数字人应用的可能。本文将深入探讨其技术开发过程,从底层架构到关键技术实现,全方位解析如何构建一个功能强大的网页版数字人系统。技术架构设计前端展示层HTML5与CSS3:构建数字人的可视化界面,实现流畅的动画效果和交互元素。利用CSS3的过渡、动画属性,为数字人的动作、表情变化提供细腻的视觉呈现
- 软件测试基础知识必备之浅谈单元测试
程序员阿沐
软件测试软件测试单元测试
什么是单元测试?单元测试是指,对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,这里的最小可测试单元通常是指函数或者类。单元测试都是以自动化的方式执行,所以在大量回归测试的场景下更能带来高收益。单元测试代码里提供函数的使用示例,因为单元测试的具体表现形式就是对函数以各种不同输入参数组合进行调用。如何做好单元测试?1)代码的基本特征与产生错误的原因无论是开发语言还是脚本语言
- AI时代个人财富增长实战指南:从零基础到精通变现的完整路径
A达峰绮
人工智能
(本文基于人工智能技术发展规律,结合互联网经济底层逻辑,为普通从业者构建系统性AI应用框架)一、建立AI认知基础:技术理解与工具掌握技术分类认知人工智能工具分为四大功能模块:自然语言处理(文本生成、对话交互)、计算机视觉(图像视频处理)、数据分析(预测建模)、自动化控制(流程优化)。建议新手首先掌握语言类工具的基础操作,逐步扩展到其他领域。工具操作逻辑通用AI工具通常包含三大核心功能模块:输入界面
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...如何解决多尺度问题?
努力毕业的小土博^_^
AI算法题库人工智能算法计算机视觉深度学习神经网络
【北上广深杭大厂AI算法面试题】计算机视觉篇…如何解决多尺度问题?【北上广深杭大厂AI算法面试题】计算机视觉篇…如何解决多尺度问题?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...如何解决多尺度问题?前言数据级别的多尺度模型架构上的多尺度表示FPN代码示例(PyTorch)说明其他多尺度处理方法总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校
- 建模中的特征衍生技巧总结(含各类常用衍生函数)
爱学习的uu
pandas机器学习人工智能数据挖掘决策树python算法
本文总结了有哪些特征衍生方法,函数是什么,用在什么场景,具体步骤如下:数据集探索:1.ID有无重复:tcc['customerID'].nunique()==tcc.shape[0]2.有无缺失值:tcc.isnull().sum()另外需注意空格的情况,离散型变量查看函数为:forfeatureintcc[category_cols]:print(f'{feature}:{tcc[feature
- 不搞花里胡哨!CMU最新开源:极简风格的LiDAR全景分割+跟踪!
3D视觉工坊
3D视觉从入门到精通3D视觉
来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf、代码链接添加微信:dddvisiona,备注:三维点云,拉你入群。文末附行业细分群1.笔者个人体会激光雷达全景分割(LPS)一般遵循自下而上的以分割为中心的范式,利用聚类获得对象实例来建立语义分割网络。但是最近CMU&Meta等大佬们重新思考了这种方法,并提出了一个简单而有效的检测中心网络,用于LPS和跟踪。这项工作也
- 搜广推校招面经五十五
Y1nhl
搜广推面经深度学习机器学习python推荐算法搜索算法广告算法人工智能
腾讯搜推面经一、双塔模型有什么缺点双塔模型(Two-TowerModel)是一种常见的推荐系统或检索系统架构,尤其在处理大规模用户-物品交互数据时表现出色。1.1.特征交互受限问题:双塔模型将用户特征和物品特征分别编码为两个独立的向量(用户塔和物品塔),然后在顶层通过简单的点积或余弦相似度计算得分。这种设计限制了用户特征和物品特征之间的细粒度交互。影响:无法捕捉复杂的特征交叉信息,可能导致模型性能
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s