- Byzer:面向Data+AI的云原生低代码化语言
ITPUB-微风
人工智能云原生低代码
在数据科学和人工智能迅速发展的今天,企业面临着如何高效处理海量数据并实现AI模型快速开发的挑战。Byzer,作为一种创新的云原生低代码化语言,为这一难题提供了独特的解决方案。本文将深入探讨Byzer的设计哲学、应用场景及其工程特性,展现其在Data+AI领域的潜力和价值。一、Byzer的设计哲学Byzer的核心设计理念在于简化大数据和AI平台的构建过程,降低开发成本。它通过类SQL的语言和云原生架
- AIoT是什么?AIoT现状如何?
问就是想睡觉
物联网人工智能
AIoT是什么?AIoT即人工智能物联网(ArtificialIntelligence&InternetofThings),是人工智能技术(AI)与物联网(IoT)在实际应用中的落地融合。物联网产生、收集来自不同维度的海量数据并存储于云端、边缘端,再通过大数据分析以及更高形式的人工智能技术,实现万物数据化、万物智联化。其目的是建构一种更高级形式的智能化生态体系,在该体系内,不同智能终端设备之间、不
- HDFS是如何存储和管理大数据
python资深爱好者
大数据hdfshadoop
HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)是专为大数据处理而设计的分布式文件系统,具有高吞吐量、高容错性等特点,适用于大规模数据存储和管理。以下是HDFS存储和管理大数据的详细机制:一、HDFS架构HDFS采用主从架构,主要包括以下组件:NameNode(主节点):作为集群的“大脑”,NameNode负责管理文件系统的命名空间,维护文件和目录的元
- SOME/IP--协议英文原文讲解1
忆源
SOME/IPAUTOSAR网络
前言SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块:1.SOME/IP协议讲解2.SOME/IP-SD协议讲解3.python/C++举例调试讲解一、SOME/IP由来及协议下载1.历史SOME/IP(Scalableservice-OrientedMiddlewarEoverIP)是由宝马的La
- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- Java 大视界 -- Java 大数据未来十年的技术蓝图与发展愿景(95)
青云交
大数据新视界Java大视界java大数据开发语言未来十年技术蓝图发展愿景新兴技术融合
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 5G 与 Java 大数据融合的行业应用与发展趋势(82)
青云交
大数据新视界Java大视界java5G大数据技术融合智能交通工业制造智能安防
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- Scala的隐式对象
yuhuhuh
scala
隐式对象:implicitobject//隐式对象//implicitobject//作用:给函数的隐式参数提供默认值objecttest5{caseclassDatabaseConfig(driver:String,url:String)//作为函数的隐式参数的默认值implicitobjectMySqlDefaultextendsDatabaseConfig("mysql","localhos
- Scala的匿名类
yuhuhuh
scala
匿名类:没有名字的类。!只能使用一次,如果想再次使用需要重新创建匿名类。举例:classCar5{varcolor="white"defrun():Unit={println("run...")}}objectTest19_3{defmain(args:Array[String]):Unit={//varcar=newCar5()//car.run()//匿名类:没有名字的类!//特点://1.没
- Scala中的Set集合运用
yuhuhuh
scala
1.可变Set2.不可变Setimportscala.collection.mutable//Set集合objectTest24{defmain(args:Array[String]):Unit={//1.定义Set//valset1=Set[元素的类型](元素1,元素2....)//元素的类型可以省略//valset1=Set[String]("小花","小明","小明")//valset1=S
- 用Scala探索身份证号码的秘密
yuhuhuh
scala
个别小知识点:1.toInt把字符串转换成整数2.toUpperCase变大写3.toLowerCase变小写4.substring(起点,终点-不包括)字符串截取5.charAt(下标)得到对应位置的字符(不是字符串)6.asDigit把字符转换成数字7."""三引号字符串,支持换行8.contains是否包含子串揭秘时刻:objecttest{defmain(args:Array[String
- Scala的抽象类
yuhuhuh
scala
抽象类:是一个不能被实例化的类。!不可以直接创建对象,而是通过子类创建对象。关键字:abstract语法:abstractclassA{}举例://定义抽象类:定义标准//抽象类是一个特殊的类,它至少包含一个抽象方法//抽象方法:没有方法体,只有def和方法名abstractclassAICar(){//具体属性varbrand="X"valcolor="red"//抽象属性:没有=varhasD
- Spark Streaming 容错机制详解
goTsHgo
spark-streaming大数据分布式spark-streaming大数据分布式
SparkStreaming是Spark生态系统中用于处理实时数据流的模块。它通过微批处理(micro-batch)的方式将实时流数据进行分片处理,每个批次的计算本质上是Spark的批处理作业。为了保证数据的准确性和系统的可靠性,SparkStreaming实现了多种容错机制,包括数据恢复、任务失败重试、元数据恢复等。接下来,我们将从底层原理和源代码的角度详细解释SparkStreaming是如何
- Spark提交任务
docsz
sparkspark大数据
1、Spark提交任务到Yarn1.1、DwKuduAppspark-submit--classcom.io.etl.dwkudu.DwKuduApp\--files/etl/etl-dwkudu/conf/doris.property,/etl/etl-dwkudu/conf/redis.property,/etl/etl-dwkudu/conf/log4j.property\--mastery
- 如何使用GraphX在Spark中进行图计算
python资深爱好者
spark大数据分布式
GraphX是ApacheSpark的一个图计算框架,它允许开发者在分布式环境中进行大规模的图数据处理和分析。以下是如何使用GraphX在Spark中进行图计算的基本步骤:1.环境准备首先,确保你已经安装了ApacheSpark,并且你的Spark版本支持GraphX。GraphX是Spark的一个组件,因此通常与Spark一起安装。2.导入GraphX库在你的Spark应用程序中,你需要导入Gr
- 在Spark中如何配置Executor内存以优化性能
python资深爱好者
sparkjava大数据
在Spark中,配置Executor内存以优化性能是一个关键步骤。以下是一些具体的配置方法和建议:一、Executor内存配置参数在Spark中,Executor的内存配置主要通过以下几个参数进行:--executor-memory或spark.executor.memory:指定每个Executor进程的内存大小。这个参数对Spark作业运行的性能影响很大。适当增加每个Executor的内存量,
- 什么容错性以及Spark Streaming如何保证容错性
python资深爱好者
spark大数据分布式
一、容错性的定义容错性是指一个系统在发生故障或崩溃时,能够继续运行并提供一定服务的能力。在网络或系统中,这通常涉及到物理组件损坏或软件失败时系统的持续运行能力。容错系统的关键特性包括负载平衡、集群、冗余、复制和故障转移等。二、SparkStreaming保证容错性的方法SparkStreaming为了保证数据的准确性和系统的可靠性,实现了多种容错机制,主要包括以下几个方面:元数据的容错性:Spar
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- Spark集群架构
情深不仅李义山
sparkspark大数据
文章目录Spark架构Spark执行任务流程Spark运行环境SparkonYARNSparkStandaloneSpark架构Spark可以运行在YARN上也可以运行Mesos上,无论运行在哪个集群管理架构上,Spark都是以主从架构运行程序。主节点会运行Driver进程,该进程会调用Spark程序的main方法,启动SparkContext;Executor就是从节点的进程,该进程负责执行Dr
- 四、spark集群架构
weixin_34411563
大数据开发工具
spark集群架构官方文档:http://spark.apache.org/docs/latest/cluster-overview.html集群架构我们先看这张图这张图把spark架构拆分成了两块内容:1)spark应用程序:即左边的DriverProgram这块;2)spark集群:即右边的ClusterManager和另外两个WorkerNode;这样的结构,我们大概可以猜测一下spark是
- Spark集群架构介绍
olifchou
Sparksparkapachespark大数据分布式
Spark之YARN介绍一、导语二、Spark及其特性三、Spark架构总览一、导语ApacheSpark(后续简称为Spark)是一款正在点燃大数据世界的开源集群计算框架。据SparkCertifiedExperts显示,在内存中运行时,Sparks性能要比Hadoop快一百倍,在磁盘上运行,Sparks比Hadoop快达十倍。在本篇博客中,我将会为你简单介绍一下Spark的底层基础架构。二、S
- Spark Standalone集群架构
htfenght
sparkspark
北风网spark学习笔记SparkStandalone集群架构SparkStandalone集群集群管理器,clustermanager:Master进程,工作节点:Worker进程搭建了一套Hadoop集群(HDFS+YARN)HDFS:NameNode、DataNode、SecondaryNameNodeYARN:ResourceManager、NodeManagerSpark集群(Spark
- Spark----Spark 在不同集群中的架构
XiaodunLP
Spark
Spark注重建立良好的生态系统,它不仅支持多种外部文件存储系统,提供了多种多样的集群运行模式。部署在单台机器上时,既可以用本地(Local)模式运行,也可以使用伪分布式模式来运行;当以分布式集群部署的时候,可以根据自己集群的实际情况选择Standalone模式(Spark自带的模式)、YARN-Client模式或者YARN-Cluster模式。Spark的各种运行模式虽然在启动方式、运行位置、调
- 大数据服务<FastApi>:30秒内防止同维度重复下载的功能
叶沧ii大数据全栈呀
pythonfastapipythonbigdata后端
1.项目背景在大数据服务接口面临大量数据查询和下载得时候,我们为了控制服务得资源占用,要考虑防止同维度重复下载得功能。我这里得背景是业务方下载大量明细数据得时候,需要控制每个处理人、所属经营主体、所属门店、所查询得时间窗口得下载频率。2.技术背景我使用的架构是FastApi在FastAPI路由处理函数中,需要添加一个30秒内防止同维度重复下载的功能。我当前的代码已经使用了BackgroundTas
- 编程新境界!文心快码用自然语言解释代码,助力高效研发
前端后端人工智能程序员
文心快码(BaiduComate)是基于百度文心大模型,在研发全流程全场景下为开发者提供辅助建议的智能代码助手。结合百度积累多年的编程现场大数据、外部优秀开源数据,可为开发者生成更符合实际研发场景的优秀代码,提升编码效率,释放“十倍”软件生产力。如果您对【文心快码企业版】感兴趣,希望获取更多详细信息,点击进入企业服务咨询我们会尽快安排专业人员与您取得联系!我们期待与您建立联系,为您的企业带来更高效
- spark1.x和spark2.x的区别
xuxu1116
sparkspark1.x与2.x的区别
spark2.x版本相对于1.x版本,有挺多地方的修改,1Spark2ApacheSpark作为编译器:增加新的引擎Tungsten执行引擎,比Spark1快10倍2ml做了很大的改进,支持协同过滤http://spark.apache.org/docs/latest/ml-collaborative-filtering.html3spark2org.apache.spark.sql加了Spark
- spark程序提交到集群上_Spark集群模式&Spark程序提交
毫无特色
spark程序提交到集群上
Spark集群模式&Spark程序提交1.集群管理器Spark当前支持三种集群管理方式Standalone—Spark自带的一种集群管理方式,易于构建集群。ApacheMesos—通用的集群管理,可以在其上运行HadoopMapReduce和一些服务应用。HadoopYARN—Hadoop2中的资源管理器。Tip1:在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用
- 基于docker-compose安装spark 1+3及Spark On Yarn模式集群
dh12313012
docker-composesparkdocker
基于docker-compose安装spark1+3及SparkOnYarn模式集群1、`docker-compose.yml`:2、`spark.env`:此处的样例是参考别人的,之后自己整合一套可以使用的1+3模式的集群。spark镜像可以自行在dockerhub选择自己想要的进行替换即可。备注:此处未开启日志功能,在WEB界面上面找不到log的,如需开启,可自行添加参数或自己进入容器手动修改
- 《聊聊Flink:大数据世界的神秘“小能手”》
狮歌~资深攻城狮
大数据技术大数据
《聊聊Flink:大数据世界的神秘“小能手”》宝子们,咱今天来唠唠一个有点神秘的东西——Flink。你要是刚听到这个名字,可能会觉得像什么魔法咒语似的。其实啊,它可没那么玄乎,但确实挺厉害的。一、Flink是啥?简单来说咱先从最简单的概念说起。Flink就像是一个超级快递员✈️在大数据的世界里,每天都有海量的数据像包裹一样到处跑。这些数据有的来自咱们的手机,像你刷短视频的记录、购物的信息;有的来
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f