黑猴子的家:Spark Streaming 消费 kafka topic

1、SparkConsumer

import java.text.SimpleDateFormat
import java.util.Calendar

import com.alibaba.fastjson.{JSON, TypeReference}
import kafka.serializer.StringDecoder
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka.KafkaUtils
import utils.{PropertyUtil, RedisUtil}

object SparkConsumer {
  def main(args: Array[String]): Unit = {

    //初始化Spark
    val sparkConf = new SparkConf().setMaster("local[2]").setAppName("TrafficStreaming")
    val sc = new SparkContext(sparkConf)
    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint("./ssc/checkpoint")

    //配置kafka参数
    val kafkaParams = Map("metadata.broker.list" -> PropertyUtil.getProperty("metadata.broker.list"))

    //配置消费主题
    val topics = Set(PropertyUtil.getProperty("kafka.topics"))

    //读取kafka中的value数据
    val kafkaLineDStream = KafkaUtils.createDirectStream[
      String,
      String,
      StringDecoder,
      StringDecoder](ssc, kafkaParams, topics)
      .map(_._2)

    ssc.start
    ssc.awaitTermination
  }
}

2、kafka.properties

bootstrap.servers=hadoop102:9092,hadoop103:9092,hadoop104:9092
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer
acks=all
retires=0

metadata.broker.list=hadoop102:9092,hadoop103:9092,hadoop104:9092

group.id=g_graffic1
enable.auto.commit=true

auto.commit.interval.ms=30000

kafka.topics=traffc

zookeeper.sync.time.ms=250
num.io.threads=12
batch.size=65536
buffer.memory=524288
log.retention.hours=5

3、PropertyUtil

import java.util.Properties

object PropertyUtil {
  val properties = new Properties()

  try {
    val inputStream = ClassLoader.getSystemResourceAsStream("kafka.properties")
    properties.load(inputStream)
  } catch {
    case e: Exception => e.getStackTrace
  } finally {}

  def getProperty(key: String): String = properties.getProperty(key)

}

4、pom.xml

    

        
            org.apache.kafka
            kafka-clients
            0.11.0.2
        

        
            org.apache.spark
            spark-core_2.11
            2.1.1
        

        
            org.apache.spark
            spark-streaming_2.11
            2.1.1
        

        
            org.apache.spark
            spark-streaming-kafka_2.11
            1.6.3
        

    

你可能感兴趣的:(黑猴子的家:Spark Streaming 消费 kafka topic)