- Scanpy源码浅析之pp.normalize_total
何物昂
版本导入Scanpy,其版本为'1.9.1',如果你看到的源码和下文有差异,其可能是由于版本差异。importscanpyasscsc.__version__#'1.9.1'例子函数pp.normalize_total用于Normalizecountspercell,其源代码在scanpy/preprocessing/_normalization.py我们通过一个简单例子来了解该函数主要功能:将一
- 大模型入门(一)
pit_man
人工智能大模型
大模型入门(一)一、LLaMa模型介绍1)Pre-normalization2)SwiGLU激活函数3)RoPE旋转位置编码二、Alpaca模型介绍三、Vicuna模型介绍大模型入门(一)——LLaMa/Alpaca/VicunaLLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-
- [Instance Normalization] The Missing Ingredient for Fast Stylization
emergency_rose
paper阅读笔记大数据
BN->IN,能有效提升纹理风格转化任务的图像生成质量1、原因1)生成图像的对比度主要取决于style图像,而非content图像;通过instancenormalization,可以去除content图像的个体对比度差异,从而简化生成过程2)高度非线性的contrastnormalization很难通过CNNblock(包含卷积、池化、上采样、BN等)来实现,因此需要直接在architectur
- 深度学习速通系列:归一化和批量归一化
Ven%
深度学习速通系列自然语言处理人工智能深度学习python机器学习
在深度学习中,归一化和批量归一化是两种常用的技术,它们有助于提高模型的训练效率和性能。下面详细解释这两种技术:归一化(Normalization)归一化是指将数据的数值范围调整到一个特定的区间,通常是[0,1]或者[-1,1],或者使其具有零均值和单位方差。这样做的目的是减少不同特征之间的数值范围差异,使得模型训练更加稳定和高效。常见的归一化方法包括:最小-最大归一化(Min-MaxScaling
- colormap-shaders 开源项目教程
凌洲丰Edwina
colormap-shaders开源项目教程colormap-shadersAcollectionofshaderstodrawcolormaps.项目地址:https://gitcode.com/gh_mirrors/co/colormap-shaders项目介绍colormap-shaders是一个GitHub上的开源项目,由开发者kbinani创建并维护。该项目主要提供了一系列用于图形渲染中
- 计算(Computation)即常规化(Normalization)
KeithTsui
类型系统与类型理论开发语言swift其他
一个表达式(Expression)的计算过程即是其常规化(Normalization)的过程,最终结果为某个类型的元素,即该表达式的值(Value)。在《类型(Type)是可构建集合(constructiveset)》一文阐述了,每个类型都定义了其元素是如何构建的,即可以通过该元素的构建过程来定义该元素。如,自然数Nat,由两个构建函数组成,记为,zero:Nat和successor:Nat->N
- MySQL 数据库的规范化与反规范化详解
yimeixiaolangzai
MySQL数据库mysql
在数据库设计中,规范化(Normalization)和反规范化(Denormalization)是两个重要的概念,它们直接影响数据的存储效率、数据一致性以及查询性能。本文将详细介绍MySQL中的第一范式、第二范式和第三范式,同时探讨反规范化的应用场景。一、规范化简介规范化是一种组织数据库结构的方法,旨在减少数据冗余、消除数据异常,确保数据的完整性。规范化通常通过一系列的规则(称为范式)来实现。常见
- sklearn preprocessing
perfectmanman
代码
sklearnpreprocessing代码代码来自Anaconda软件里sklearn模块init.py"""The:mod:`sklearn.preprocessing`moduleincludesscaling,centering,normalization,binarizationandimputationmethods."""from.dataimportBinarizerfrom.da
- 深度学习代码|Batch Normalization批归一化的代码实现
丁希希哇
深度学习代码手撕深度学习人工智能pytorch算法
文章目录一、导入相关库二、批量归一化层BatchNorm(一)理论基础(二)代码实现一、导入相关库importtorchfromtorchimportnnfromlabml_helpers.moduleimportModule二、批量归一化层BatchNorm(一)理论基础当输入X∈RB×C×H×WX\in\mathbb{R}^{B\timesC\timesH\timesW}X∈RB×C×H×W是
- matlab绘制contourf 和 pcolor 卫星数据图caxis并设置colorbar范围
拾穗哥
matlab经验分享
1contourfx=reshape(data1(:,1),1800,1320);y=reshape(data1(:,2),1800,1320);z=reshape(h,1800,1320);[C,H]=contourf(x,y,z,100);%contourf(peaks(20),10);axisequalset(H,'LineColor','none');colormap('jet');%h=
- 深度学习中Batch/Layer/Instance/Group normalization方法
__momo__
PyTorch#DataProcessing深度学习batch人工智能
图片中,N是batchsize,c是channel。BN:在每一个channel内,对H,W,Batch做平均LN:在每一个batch内,对H,W,Channel做平均IN:在每一个channel和batch内,对H,W做平均GN:在每一个batch内,将channel进行分组,在分组内对H,W做平均。
- 九、OpenCV自带colormap
beyond谚语
OpenCV4.8&&C++&&VSopencv人工智能计算机视觉
项目功能实现:每隔1500ms轮流自动播放不同风格图像显示,按下Esc键退出按照之前的博文结构来,这里就不在赘述了一、头文件colormap.h#pragmaonce#includeusingnamespacecv;classColorMap{public:voidcolor_map(Mat&image);};二、函数实现colorsapces.cpp#include"colormap.h"#in
- matplotlib的colormap(颜色映射)
大海龟啦啦啦
matplotlib中用来做热图的颜色映射有很多种,我们可以选择各种不同的颜色映射来做出符合我们预期的热图。其源代码如下所示:本代码是根据官网(http://matplotlib.org/examples/color/colormaps_reference.html)的源代码转载过来的importnumpyasnpimportmatplotlib.pyplotasplt#Havecolormaps
- 批归一化(Batch Normalization,简称BN)层的作用!!
小桥流水---人工智能
机器学习算法Python程序代码batch开发语言
批归一化(BatchNormalization,简称BN)层在卷积神经网络中的作用主要有以下几点:规范化数据:批归一化可以对每一批数据进行归一化处理,使其均值接近0,方差接近1。这有助于解决内部协变量偏移(InternalCovariateShift)问题,即网络训练过程中,由于每层的参数更新,导致后续层的输入分布发生变化。加速训练:通过规范化数据,批归一化可以使得网络更容易训练,因为网络不再需要
- python 灰度图转彩色图
徴徴南风
cv2.applyColorMap(cv2.convertScaleAbs(dep,alpha=15),cv2.COLORMAP_HSV)
- Batch Normalization本质:平滑优化空间
CristianoC
相信BN层对大家来说并不陌生,今天除了讲解BN被大家说的比较多的东西外会讲一下BN真正work的本质。今天之所以来讲解BN是因为早上听了一个旷视的讲座,听完之后发现旷视研究院在今年1月19日发表的用来解决小批量训练BN不稳定的问题论文:MABN。这对于一般用自己电脑来训练网络的我来说感觉是一个福音,可以减缓batch_size设小之后性能降低的问题(谷歌在一个月前也提出了改进的FRN:一种不依赖b
- 各种Normalization的区别
小幸运Q
https://blog.csdn.net/qq_21949357/article/details/82864477https://blog.csdn.net/u014380165/article/details/79810040其中两维C和N分别表示channel和batchsize,第三维表示H,W,可以理解为该维度大小是H*W,也就是拉长成一维,这样总体就可以用三维图形来表示。图片.pngB
- JPEG图像格式加速神经网络训练--使用DCT训练CNN
kadog
ByGPT神经网络cnn人工智能计算机视觉图像处理深度学习
JPEG图像格式加速神经网络训练JPEG图像格式加速神经网络训练工作原理DCT系数与JPEG直接利用DCT系数阶段1:数据准备步骤1:读取JPEG文件结构步骤2:提取量化表和Huffman表步骤3:解析图像数据步骤4:反量化步骤5:获取DCT系数阶段2:输入处理预处理1:正规化(Normalization)预处理2:中心化(Centering)预处理3:选择性剔除预处理4:量化系数补偿预处理5:重
- 机器学习数据预处理方法(数据重编码) ##2
恒c
机器学习人工智能数据分析
文章目录@[TOC]基于Kaggle电信用户流失案例数据(可在官网进行下载)一、离散字段的数据重编码1.OrdinalEncoder自然数排序2.OneHotEncoder独热编码3.ColumnTransformer转化流水线二、连续字段的特征变换1.标准化(Standardization)和归一化(Normalization)2.连续变量分箱3.连续变量特征转化的ColumnTransform
- LLaMA 模型中的Transformer架构变化
samoyan
llamatransformer深度学习
目录1.前置层归一化(Pre-normalization)2.RMSNorm归一化函数3.SwiGLU激活函数4.旋转位置嵌入(RoPE)5.注意力机制优化6.GroupQueryAttention7.模型规模和训练超参数8.分布式模型训练前置归一化与后置归一化的区别前置归一化(Pre-normalization)后置归一化(Post-normalization)结论1.前置层归一化(Pre-no
- sklearn实现数据标准化(Standardization)和归一化(Normalization)
恒c
sklearnpython机器学习
标准化(Standardization)sklearn的标准化过程,即包括Z-Score标准化,也包括0-1标准化,并且即可以通过实用函数来进行标准化处理,同时也可以利用评估器来执行标准化过程。接下来我们分不同功能以的不同实现形式来进行讨论:Z-Score标准化的评估器实现方法#首先是评估器导入fromsklearn.preprocessingimportStandardScaler#评估器的实例
- sklearn.preprocessing 标准化、归一化、正则化
Cachel wood
python机器学习和数据挖掘sklearn人工智能python机器学习数据库pandas
文章目录数据标准化的原因作用归一化最大最小归一化针对规模化有异常的数据标准化线性比例标准化法log函数标准化法正则化Normalization标准化的意义数据标准化的原因某些算法要求样本具有零均值和单位方差;需要消除样本不同属性具有不同量级时的影响:①数量级的差异将导致量级较大的属性占据主导地位;②数量级的差异将导致迭代收敛速度减慢;③依赖于样本距离的算法对于数据的数量级非常敏感。在不同的问题中,
- 机器学习复习(6)——numpy的数学操作
不会写代码!!
人工智能机器学习复习机器学习算法机器学习numpy人工智能
加减法运算#创建两个不同的数组a=np.arange(4)#list(0,1,2,3b=np.array([5,10,15,20])#两个数组做减法运算b-a运行结果:计算数组的平方#b*2代表数组b每个元素乘以2#b**2代表数组b每个元素的2次方b**2运行结果:计算数组的正弦值#计算数组的正弦值np.sin(a)#np.cos(a)运行结果:normalization涉及的其他计算在norm
- 【深度学习】【BN】batch normalization(批量归一化)详解
忘却的旋律dw
深度学习人工智能
批量归一化(batchnormalization)开山之作:#BatchNormalization:AcceleratingDeepNetworkTrainingbyReducingInternalCovariateShift时间:2015年训练深层神经网络是十分困难的,特别是在较短的时间内使他们收敛更加棘手。批量归一化是一种流行且有效的技术,尤其是可以加速深层网络的收敛速度。1、为什么使用批量归
- 机器学习和深度学习中的normalization(归一化)
实名吃香菜
深度学习机器学习深度学习人工智能
在机器学习和深度学习中,normalization(归一化)是一种重要的数据预处理步骤,它的目的是改变数值数据的形式,以使其在一个固定的范围内,通常是0到1,或者使其均值为0,标准差为1。归一化对于优化算法(如梯度下降),以及能够有效地训练深度学习网络是非常重要的。以下是一些归一化的关键点和常见类型:为什么需要归一化提高收敛速度:在优化算法中,归一化可以加速学习过程,因为它确保了所有的输入特征都在
- 【深度学习】数据归一化/标准化 Normalization/Standardization
神也在Copy
深度学习深度学习人工智能归一化标准化
目录一、实际问题二、归一化Normalization三、归一化的类型1.Min-maxnormalization(Rescaling)2.Meannormalization3.Z-scorenormalization(Standardization)4.非线性归一化4-1对数归一化4-2反正切函数归一化4-3小数定标标准化(DemicalPointNormalization)四、如何选择归一化函数
- 二维码提高对比度文献调研(2)--HINet: Half Instance Normalization Network for Image Restoration
utflpc
提高对比度
目录简介主要idea实验简介实验结果所遇到的问题运行失败信息GPU不够简介(1)论文名称:HINet:HalfInstanceNormalizationNetworkforImageRestorationCVPR2021(2)论文链接:https://arxiv.org/abs/2105.06086(3)源代码:https://github.com/megvii-model/HINet主要idea
- 【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022)附MaxNorm的代码
鱼小丸
论文阅读
目录论文使用方法weightdecayMaxNorm如果使用原来的代码报错的可以看下面这个论文问题:真实世界中普遍存在长尾识别问题,朴素训练产生的模型在更高准确率方面偏向于普通类,导致稀有的类别准确率偏低。key:解决LTR的关键是平衡各方面,包括数据分布、训练损失和学习中的梯度。文章主要讨论了三种方法:L2normalization,weightdecay,andMaxNorm本文提出了一个两阶
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Cat丹
目标:实时任意风格转移方法:adaptiveinstancenormalization原理:图像的风格就是特征图各个featurechannel跨空间的统计信息,比如mean和variance。迁移各个channel的mean和variance就可以实现风格迁移。效果:可实时实现任意风格图片转移,并且可以控制content-styletrade-off,styleinterpolation,col
- syncbn讲解(同步Batch Normalization)
fayetdd
计算机视觉深度学习pytorch神经网络目标检测
目前网络的训练多为多卡训练,大型网络结构以及复杂任务会使得每张卡负责的batch-size小于等于1,若不进行同步BN,movingmean、movingvariance参数会产生较大影响,造成BN层失效。为简化inference过程,以及商业代码保密,通常进行BN融合操作。即把BN参数融合至conv层。BN的性能和batchsize有很大的关系。batchsize越大,BN的统计量也会越准。然而
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在