- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- 【YOLOv11改进- 主干网络】YOLOv11+CSWinTransformer: 交叉窗口注意力Transformer助力YOLOv11有效涨点;
算法conv_er
YOLOv11目标检测改进YOLO目标跟踪人工智能目标检测深度学习transformer计算机视觉
YOLOV11目标检测改进实例与创新改进专栏专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等本文介绍发paper,毕业皆可使用。本文给大家带来的改进内容是在YOLOv11中更换主干网络为CSWinTransformer,助力YOLOv11有效涨点,通过创新性地开发了十字形窗口自注意力机制。该机制通过将输入特征分割为等宽条纹,在水平与
- 使用Python和OpenAI Whisper实现YouTube视频转文字及问答系统
llzwxh888
pythonwhisper音视频
使用Python和OpenAIWhisper实现YouTube视频转文字及问答系统引言在当今的AI时代,从视频内容中提取有价值的信息变得越来越重要。本文将介绍如何使用Python和OpenAIWhisperAPI将YouTube视频转换为文本,并基于此构建一个简单的问答系统。这个过程不仅能帮助我们更好地理解和分析视频内容,还能为进一步的自然语言处理任务奠定基础。主要内容1.环境准备首先,我们需要安
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- 神经网络常见激活函数 10-GELU函数
亲持红叶
神经网络常见激活函数神经网络neo4j人工智能
GELU高斯误差线性单元(Gaussianerrorlinearunit)函数+导函数GELU函数的公式(近似表达式)GELU(x)=x∗P(X<=x)=x∗Φ(x)\rmGELU(x)=x*P(X<=x)=x*\Phi(x)GELU(x)=x∗P(X<=x)=x∗Φ(x)其中Φ(x)\Phi(x)Φ(x)指的是x的高斯正太分布的累积分布函数(CDF),进一步地,可得该函数的具体表达为x∗P(X<
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- 过于依赖chatgpt编程会有哪些弊端?
奇偶变不变
AIchatgpt人工智能
过于依赖ChatGPT编程可能会带来以下问题:1.基础不扎实,容易“变菜”以前遇到代码还会琢磨哪里不懂、怎么改,现在直接复制粘贴,时间长了可能连基本的语法和逻辑都搞不清楚。就像考试总抄答案,真让你自己写的时候脑子一片空白。2.代码质量看运气ChatGPT生成的代码看似能用,但可能有隐藏的bug(比如安全漏洞、性能差),或者和你的实际需求不符。如果完全不检查直接运行,相当于闭着眼睛开车,翻车概率大增
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- 探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
羑悻的小杀马特.
AI学习科技deepseekAI大模型
DeepSeekR1模型功能强大,应用广泛。在自然语言处理、计算机视觉、推荐系统和医疗等领域都能发挥作用。本文介绍了其在各领域的应用场景和代码示例,助你深入了解它。目录编辑一、本篇背景:二、DeepSeekR1模型概述:2.1模型特点:2.2技术原理:三、自然语言处理领域的应用:3.1文本分类:3.1.1应用场景:3.1.2代码演示:3.2情感分析:3.2.1应用场景:3.2.2代码演示:3.3机
- 如何让ChatGPT生成Midjourney提示词
AI观星台
人工智能stablediffusionmidjourney
关注文章下方公众号,即可免费获取AIGC最新学习资料导读:最近AI绘画非常的火,今天我们看ChatGPT如何生成Midjourney提示词,让AI教AI做事。本文字数:900,阅读时长大约:3分钟正如Midjourney的官方网站报道的那样,提供工作提示(Prompt)是一项碰运气的业务。从单个表情符号或单词都可以生成图像,但自然地结果可能并不完全符合用户的预期。一般来说,提示越长、越详细,结果就
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- 本地部署DeepSeek模型技术指南
Evaporator Core
apacheDoris人工智能deepseek
DeepSeek模型是一种先进的深度学习模型,广泛应用于自然语言处理、计算机视觉等领域。为了充分利用DeepSeek模型的强大功能,许多开发者和研究人员选择在本地环境中部署该模型。本文将详细介绍如何在本地环境中部署DeepSeek模型,包括环境准备、模型下载、配置、优化以及代码实现等内容。通过本文的指导,您将能够在本地成功部署并运行DeepSeek模型。1.环境准备在部署DeepSeek模型之前,
- 使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南
m0_57781768
pythonlangchaineasyui
使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南在现代人工智能应用中,大语言模型(LLM)扮演着越来越重要的角色,尤其是在对话系统、智能助理和其他自然语言处理任务中。然而,所有的模型都有一个有限的上下文窗口,意味着它们可以处理的输入令牌(tokens)数量是有限的。当我们需要处理较长的对话历史或复杂的任务链时,如何管理传递给模型的消息长度变得至关重要。在这篇文章
- DeepSeek推理模型架构以及DeepSeek爆火的原因
微学AI
架构LLMdeepseek
大家好,我是微学AI,今天给大家介绍一下DeepSeek推理模型架构以及DeepSeek爆火的原因,DeepSeek推理模型凭借其创新的混合专家(MoE)架构和优化的Transformer架构,融合稀疏注意力机制,实现了高效的计算资源分配与显著降低的推理成本。在训练过程中,DeepSeek广泛应用蒸馏技术,通过生成高质量数据和将大型模型的推理能力迁移至小型模型,大幅提升训练效率与模型性能。Deep
- 如何在Java中设计大规模稀疏数据处理架构
省赚客app开发者
java架构开发语言
如何在Java中设计大规模稀疏数据处理架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在大数据时代,稀疏数据在各个领域变得越来越常见,例如推荐系统、自然语言处理、图像处理等。稀疏数据通常包含大量零值或空值,直接使用传统的数据处理架构可能导致效率低下,内存和计算资源浪费。因此,设计一个高效的稀疏数据处理架构成为Java开发者面临的关键挑战。本文将探讨如何在Java中
- ChatGPT 提示词全网最全案例汇总
编程IT圈
chatgpt人工智能
GPT地址,收藏不迷路:https://ai.cxyquan.com/ChatGPT提示词案例分享充当旅游指南我想让你做一个旅游指南。我会把我的位置写给你,你会推荐一个靠近我的位置的地方。在某些情况下,我还会告诉您我将访问的地方类型。您还会向我推荐靠近我的第一个位置的类似类型的地方。我的第一个建议请求是“我在上海,我只想参观博物馆。”充当时间旅行指南我要你做我的时间旅行向导。我会为您提供我想参观的
- DeepSeek R1 vs ChatGPT o1 实测 7 大场景终极对决
网络安全我来了
人工智能AIchatgpt
R1vso1:7大场景终极对决引言你需要的不是「最好」,而是「最合适」想象一下,你面前有两把瑞士军刀:一把刀锋锐利但功能单一,另一把功能繁多但需要时间磨合。你会怎么选?人工智能模型的选择也是如此。DeepSeekR1和ChatGPTo1就像这两把军刀,它们的胜负不在绝对强弱,而在场景适配。根据实测数据,我们将通过编程、教育、创意等7个战场,解剖这两大AI巨头的真实战斗力。一、语言战场当AI成为「读
- 我让DeepSeek和ChatGPT互相聊聊两者的区别,大白话版笑死我了
前端点线面
chatgpt人工智能
大家好,我是纸鸢飞飞,今天跟大家一起做一件比较有意思的事情,让DeepSeek和ChatGPT互相聊聊两者的区别,话不多说,马上进入正题。第一版的针锋相对提示词:你是一名资深的自媒体博主,写过很多篇公众号文章爆款,现在写一篇关于DeepSeek和ChatGPT的不同,从而给普通人的启示的文章,注意该文章内容主要分成3个部分。DeepSeek的回答:DeepSeekvsChatGPT:普通人逆袭的启
- 书籍-《掌握Transformer:从BERT到大模型和Stable Diffusion(第二版)》
书籍:MasteringTransformers:TheJourneyfromBERTtoLargeLanguageModelsandStableDiffusion,2ndEdition作者:SavaşYıldırım,MeysamAsgari-Chenaghlu出版:PacktPublishing编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《掌握Transformer:从BERT到大模型
- 大语言模型(LLM)如何实现上下文的长期记忆?
引言大语言模型(LargeLanguageModels,LLMs),如GPT-4、Claude和LLaMA等,已经在自然语言处理领域展现出卓越的能力。然而,它们在实际应用中常常面临一个核心问题:如何实现上下文的长期记忆?传统LLM的上下文长度通常受限于计算资源和架构设计(如注意力机制),这限制了其处理长文档或保持复杂对话连续性的能力。本篇文章将深入探讨大语言模型的上下文记忆问题,分析其技术难点,并
- DeepSeek vs ChatGPT:大模型技术路径的“分水岭”与行业颠覆性创新——2025年AI领域生态重构与场景革命深度观察
富 贵 儿 ¥
人工智能开发语言大数据python
引言:从“参数竞赛”到“场景战争”的范式转移2025年,全球AI产业正经历从“技术崇拜”到“价值落地”的关键转折。当OpenAI、Google等巨头仍执着于千亿参数堆砌时,中国团队打造的DeepSeek以“场景穿透力”异军突起。这场较量不仅是技术架构的对垒,更是AI商业化逻辑的根本性变革。本文基于独家技术拆解与300+企业落地案例调研,揭示两大模型如何重塑行业规则。一、技术架构革命:MoEvsTr
- DeepSeek与ChatGPT:AI语言模型的全面对决
四念处茫茫
AI人工智能chatgpt语言模型
DeepSeek与ChatGPT:AI语言模型的全面对决引言:AI语言模型的时代浪潮一、认识DeepSeek与ChatGPT(一)DeepSeek:国产新星的崛起(二)ChatGPT:AI界的开拓者二、DeepSeek与ChatGPT使用指南(一)DeepSeek使用全攻略1.多种使用途径介绍2.功能使用技巧(二)ChatGPT使用秘籍1.访问与使用流程三、深度剖析:功能大比拼(一)文本创作能力(
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- 翻译Deep Learning and the Game of Go(14)第十二章 采用actor-critic方法的强化学习
idol_watch
围棋与深度学习
本章包括:利用优势使强化学习更有效率用actor-critic方法来实现自我提升AI设计和训练Keras的多输出神经网络如果你正在学习下围棋,最好的改进方法之一是让一个水平更高的棋手给你复盘。有时候,最有用的反馈只是指出你在哪里赢棋或输棋。复盘的人可能会给出这样的评论,“你下了30步后已经远远落后了”或“在下了110步后,你有一个获胜的局面,但你的对手在130时扭转了局面。”为什么这种反馈是有帮助
- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- 【漫话机器学习系列】041.信息丢失(dropout)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
信息丢失(Dropout)Dropout是一种广泛应用于神经网络训练中的正则化技术,旨在减少过拟合(overfitting),提高模型的泛化能力。虽然"信息丢失"(dropout)这个术语在某些情况下可能引起误解,指的并非是数据的丢失,而是训练过程中故意“丢弃”神经网络中的部分神经元。这种做法可以避免模型过于依赖于某些特定的神经元,从而提高模型在新数据上的表现。Dropout的工作原理在神经网络的
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(