蚁群算法求解tsp matlab,蚁群算法TSP问题MATLAB源程序

TSP问题蚁群算法通用MATLAB源程序

蚁群算法是当前研究十分火热的一种智能算法,下面的蚁群算法程序专门用于求解TSP问题,此程序由GreenSim团队于2006年初完成,最初公开发表于研学论坛。

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%=========================================================================

%  ACATSP.m

%  Ant Colony Algorithm for Traveling Salesman Problem

%  GreenSim团队原创作品,转载请注明

%  GreenSim团队长期从事算法设计、代写程序等业务

%  欢迎访问GreenSim——算法仿真团队→http://blog.sina.com.cn/greensim

%%-------------------------------------------------------------------------

%%  主要符号说明

%%  C        n个城市的坐标,n×2的矩阵

%%  NC_max   最大迭代次数

%%  m        蚂蚁个数

%%  Alpha    表征信息素重要程度的参数

%%  Beta     表征启发式因子重要程度的参数

%%  Rho      信息素蒸发系数

%%  Q        信息素增加强度系数

%%  R_best   各代最佳路线

%%  L_best   各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(*,1);%*表示问题的规模(城市个数)

*=zeros(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;

end

D(j,i)=D(i,j);

end

end

Eta=1./D;%Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);%Tau为信息素矩阵

Tabu=zeros(m,n);%存储并记录路径的生成

NC=1;%迭代计数器

R_best=zeros(NC_max,n);%各代最佳路线

L_best=inf.*ones(NC_max,1);%各代最佳路线的长度

L_ave=zeros(NC_max,1);%各代路线的平均长度

while NC<=NC_max%停止条件之一:达到最大迭代次数

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n

for i=1:m

visited=Tabu(i,1:(j-1));%已访问的城市

J=zeros(1,(n-j+1));%待访问的城市

P=J;%待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0

J(Jc)=k;

Jc=Jc+1;

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

en*

*=*/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);

Select=find(Pcum>=rand);

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));

end

L(i)=L(i)+D(R(1),R(n));

end

L_best(NC)=min(L);

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:);

L_ave(NC)=mean(L);

NC=NC+1

%%第五步:更新信息素

Delta_Tau=zeros(n,n);

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

end

Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零

Tabu=zeros(m,n);

end

%%第七步:输出结果

Pos=find(L_best==min(L_best));

Shortest_Route=R_best(Pos(1),:);

Shortest_Length=L_best(Pos(1));

subplot(1,2,1)

DrawRoute(C,Shortest_Route)

subplot(1,2,2)

plot(L_best)

hold on

plot(L_ave)

function DrawRoute(C,R)

%%====================================================================

%%  DrawRoute.m

%%  画路线图的子函数

%%--------------------------------------------------------------------

%%  C    Coordinate        节点坐标,由一个N×2的矩阵存储

%%  R    Route             路线

%%====================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])

hold on

end

你可能感兴趣的:(蚁群算法求解tsp,matlab)