EnsembleLearning-机器学习基础(day3)

使用sklearn构建完整的机器学习项目流程

文章目录

  • 使用sklearn构建完整的机器学习项目流程
      • 4.2 优化基础模型
        • 4.2.1 背景
        • 4.2.2 解决方法
          • (a) 最小化训练误差
          • (b) 偏差-方差的权衡
          • (c ) 特征提取
          • (d) 压缩估计(正则化)
          • (e) 降维:
        • 4.2.3 实战
    • reference

承接上一篇博客

4.2 优化基础模型

4.2.1 背景

我们关心的是模型面对未知的样本集,即测试集上的测试误差,我们的目标是使得我们建立的模型在测试集上的测试误差最小。那我们如何选择一个测试误差最小的模型呢?

4.2.2 解决方法

(a) 最小化训练误差

如:在线性回归中,我加入非常多的高次项,使得我们模型在训练集的每一个数据点都恰好位于曲线上,那这时候模型在训练集的损失值也就是误差为0。
EnsembleLearning-机器学习基础(day3)_第1张图片
但是在训练集上效果好,在测试集效果一定好吗?

那我们如何选择一个测试误差最小的模型呢?这是个棘手的问题,因为在模型建立阶段,我们是不能得到测试数据的,比如:我们在模型未上线之前是不能拿到未知且真实的测试数据来验证我们的模型的。在这种情况下,为了简便起见,一些观点认为通过训练误差最小化来选择模型也是可行的。这种观点表面看上去是可行的,但是存在一个致命的缺点,那就是:一个模型的训练均方误差最小时,不能保证测试均方误差同时也很小。对于这种想法构造的模型,一般在训练误差达到最小时,测试均方误差一般很大!如图:
EnsembleLearning-机器学习基础(day3)_第2张图片
EnsembleLearning-机器学习基础(day3)_第3张图片
可以看到:当我们的模型的训练均方误差达到很小时,测试均方误差反而很大,但是我们寻找的最优的模型是测试均方误差达到最小时对应的模型,因此基于训练均方误差达到最小选择模型本质上是行不同的。正如上右图所示:模型在训练误差很小,但是测试均方误差很大时,我们称这种情况叫模型的过拟合

(b) 偏差-方差的权衡

这个怎么证明的我就不深入了。
从上图的测试均方误差曲线可以看到:测试均方误差曲线呈现U型曲线,这表明了在测试误差曲线中有两种力量在互相博弈。可以证明:
E ( y 0 − f ^ ( x 0 ) ) 2 = Var ⁡ ( f ^ ( x 0 ) ) + [ Bias ⁡ ( f ^ ( x 0 ) ) ] 2 + Var ⁡ ( ε ) E\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\varepsilon) E(y0f^(x0))2=Var(f^(x0))+[Bias(f^(x0))]2+Var(ε)
也就是说,我们的测试均方误差的期望值可以分解为 f̂ (x0) 的方差、 f̂ (x0) 的偏差平方和误差项 ϵ 的方差。为了使得模型的测试均方误差达到最小值,也就是同时最小化偏差的平方和方差

方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响;

举个例子:我们想要建立一个线性回归模型,可以通过输入中国人身高去预测我们的体重。但是显然我们没有办法把全中国13亿人做一次人口普查,拿到13亿人的身高体重去建立模型。我们能做的就是从13亿中抽1000个样本进行建模,我们对这个抽样的过程重复100遍,就会得到100个1000人的样本集。我们使用线性回归模型估计参数就能得到100个线性回归模型。由于样本抽取具有随机性,我们得到的100个模型不可能参数完全一样,那么这100个模型之间的差异就叫做方差。显然,我们希望得到一个稳定的模型,也就是在不同的样本集估计的模型都不会相差太大,即要求f的方差越小越好。一般来说,模型的复杂度越高,f的方差就会越大。 如加入二次项的模型的方差比线性回归模型的方差要大

偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;

总之:variance强调了模型的泛化能力,bias强调了模型的误差能力一般而言,增加模型的复杂度,会增加模型的方差,但是会减少模型的偏差,我们要找到一个方差–偏差的权衡,使得测试均方误差最小。

(c ) 特征提取

首先要得到测试误差。
我们要选择一个测试误差达到最小的模型。但是实际上我们很难对实际的测试误差做精确的计算,因此我们要对测试误差进行估计,估计的方式有两种:训练误差修正与交叉验证

  • 训练误差修正:

前面的讨论我们已经知道,模型越复杂,训练误差越小,测试误差先减后增。因此,我们先构造一个特征较多的模型使其过拟合,此时训练误差很小而测试误差很大,那这时我们加入关于特征个数的惩罚。因此,当我们的训练误差随着特征个数的增加而减少时,惩罚项因为特征数量的增加而增大,抑制了训练误差随着特征个数的增加而无休止地减小。

C p = 1 N ( R S S + 2 d σ ^ 2 ) C_p = \frac{1}{N}(RSS + 2d\hat{\sigma}^2) Cp=N1(RSS+2dσ^2),其中d为模型特征个数, R S S = ∑ i = 1 N ( y i − f ^ ( x i ) ) 2 RSS = \sum\limits_{i=1}^{N}(y_i-\hat{f}(x_i))^2 RSS=i=1N(yif^(xi))2 σ ^ 2 \hat{\sigma}^2 σ^2为模型预测误差的方差的估计值,即残差的方差

拓展:
残差是指预测结果与真实值之间的差异,这么一看,和模型偏差的定义很接近,两者的区别是偏差模型拟合度不够导致,而残差是模型准确,但仍然与真实值有一定的差异,这里可以理解成噪声,噪声是随机的,意味着不可预测,而偏差不是随机产生的,可通过一定的特征工程进行预测;
但是到底是怎么计算的????

AIC赤池信息量准则: A I C = 1 d σ ^ 2 ( R S S + 2 d σ ^ 2 ) AIC = \frac{1}{d\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2) AIC=dσ^21(RSS+2dσ^2)
BIC贝叶斯信息量准则: B I C = 1 n ( R S S + l o g ( n ) d σ ^ 2 ) BIC = \frac{1}{n}(RSS + log(n)d\hat{\sigma}^2) BIC=n1(RSS+log(n)dσ^2)
看公式可以发现:特征个数越多,损失越大。但是我觉得不是很靠谱呢,哈哈。可以试一试。(特征工程没有用过这个trick)

  • 交叉验证:

只用过k折交叉验证。就是把训练样本分成K等分,然后用K-1个样本集当做训练集,剩下的一份样本集为验证集去估计由K-1个样本集得到的模型的精度,最后取平均或者范围。

EnsembleLearning-机器学习基础(day3)_第4张图片
然后根据测试误差进行特征选择,使得测试误差最小
在测试误差能够被合理的估计出来以后,我们做特征选择的目标就是:从p个特征中选择m个特征,使得对应的模型的测试误差的估计最小。对应的方法有:

这里列举两种线性回归模型比较常见的特征选择方法:分别是最优子集和逐步回归。此外还有正则化,降维等方法。

  • 最优子集选择:
  1. 记不含任何特征的模型为 M 0 M_0 M0,计算这个 M 0 M_0 M0的测试误差。
  2. M 0 M_0 M0基础上增加一个变量,计算p个模型的RSS,选择RSS最小的模型记作 M 1 M_1 M1,并计算该模型 M 1 M_1 M1的测试误差。
  3. 再增加变量,计算p-1个模型的RSS,并选择RSS最小的模型记作 M 2 M_2 M2,并计算该模型 M 2 M_2 M2的测试误差。
  4. 重复以上过程知道拟合的模型有p个特征为止,并选择p+1个模型 { M 0 , M 1 , . . . , M p } \{M_0,M_1,...,M_p \} {M0,M1,...,Mp}中测试误差最小的模型作为最优模型。
  • 向前逐步选择:

最优子集选择虽然在原理上很直观,但是随着数据特征维度p的增加,子集的数量为 2 p 2^p 2p,计算效率非常低下且需要的计算内存也很高,在大数据的背景下显然不适用。因此,我们需要把最优子集选择的运算效率提高,因此向前逐步选择算法的过程如下:

  1. 记不含任何特征的模型为 M 0 M_0 M0,计算这个 M 0 M_0 M0的测试误差。
  2. M 0 M_0 M0基础上增加一个变量,计算p个模型的RSS,选择RSS最小的模型记作 M 1 M_1 M1,并计算该模型 M 1 M_1 M1的测试误差。
  3. 在最小的RSS模型下继续增加一个变量,选择RSS最小的模型记作 M 2 M_2 M2,并计算该模型 M 2 M_2 M2的测试误差。
  4. 以此类推,重复以上过程知道拟合的模型有p个特征为止,并选择p+1个模型 { M 0 , M 1 , . . . , M p } \{M_0,M_1,...,M_p \} {M0,M1,...,Mp}中测试误差最小的模型作为最优模型。
(d) 压缩估计(正则化)

除了刚刚讨论的直接对特征自身进行选择以外,我们还可以对回归的系数进行约束或者加罚的技巧对p个特征的模型进行拟合,显著降低模型方差,这样也会提高模型的拟合效果。具体来说,就是将回归系数往零的方向压缩,这也就是为什么叫压缩估计的原因了。

  • L2(岭回归)

假设在线性回归中,我们的损失函数为 J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 J(w)=i=1N(yiw0j=1pwjxij)2,我们在线性回归的损失函数的基础上添加对系数的约束或者惩罚,即:
J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 + λ ∑ j = 1 p w j 2 ,      其 中 , λ ≥ 0 w ^ = ( X T X + λ I ) − 1 X T Y J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 + \lambda\sum\limits_{j=1}^{p}w_j^2,\;\;其中,\lambda \ge 0\\ \hat{w} = (X^TX + \lambda I)^{-1}X^TY J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pwj2,λ0w^=(XTX+λI)1XTY

调节参数 λ \lambda λ的大小是影响压缩估计的关键, λ \lambda λ越大,惩罚的力度越大,系数则越趋近于0,反之,选择合适的 λ \lambda λ对模型精度来说十分重要。岭回归通过牺牲线性回归的无偏性降低方差,有可能使得模型整体的测试误差较小,提高模型的泛化能力。

  • Lasso回归(L1正则化的例子):

岭回归的一个很显著的特点是:将模型的系数往零的方向压缩,但是岭回归的系数只能呢个趋于0但无法等于0,换句话说,就是无法做特征选择。能否使用压缩估计的思想做到像特征最优子集选择那样提取出重要的特征呢?答案是肯定的!我们只需要对岭回归的优化函数做小小的调整就行了,我们使用系数向量的L1范数替换岭回归中的L2范数:
J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 + λ ∑ j = 1 p ∣ w j ∣ ,      其 中 , λ ≥ 0 J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 + \lambda\sum\limits_{j=1}^{p}|w_j|,\;\;其中,\lambda \ge 0 J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pwj,λ0

为什么Losso能做到特征选择而岭回归却不能呢个做到呢?(如图:左边为lasso,右边为岭回归)
两者的区别,L1能做到特征选择,L2做不到特征选择。

L2正则化的效果是对原最优解的每个元素进行不同比例的放缩; L1正则化则会使原最优解的元素产生不同量的偏移,并使某些元素为0,从而产生稀疏性。

(e) 降维:

到目前为止,我们所讨论的方法对方差的控制有两种方式:一种是使用原始变量的子集,另一种是将变量系数压缩至零。但是这些方法都是基于原始特征 x 1 , . . . , x p x_1,...,x_p x1,...,xp得到的,现在我们探讨一类新的方法:将原始的特征空间投影到一个低维的空间实现变量的数量变少,如:将二维的平面投影至一维空间。

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少 冗余信息 所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。

主成分分析(PCA):
主成分分析的思想:通过最大投影方差 将原始空间进行重构,即由特征相关重构为无关,即落在某个方向上的点(投影)的方差最大。在进行下一步推导之前,我们先把样本均值和样本协方差矩阵推广至矩阵形式:
样本均值Mean: x ˉ = 1 N ∑ i = 1 N x i = 1 N X T 1 N ,        其 中 1 N = ( 1 , 1 , . . . , 1 ) N T \bar{x} = \frac{1}{N}\sum\limits_{i=1}^{N}x_i = \frac{1}{N}X^T1_N,\;\;\;其中1_N = (1,1,...,1)_{N}^T xˉ=N1i=1Nxi=N1XT1N,1N=(1,1,...,1)NT
样本协方差矩阵 S 2 = 1 N ∑ i = 1 N ( x i − x ˉ ) ( x i − x ˉ ) T = 1 N X T H X ,        其 中 , H = I N − 1 N 1 N 1 N T S^2 = \frac{1}{N}\sum\limits_{i=1}^{N}(x_i-\bar{x})(x_i-\bar{x})^T = \frac{1}{N}X^THX,\;\;\;其中,H = I_N - \frac{1}{N}1_N1_N^T S2=N1i=1N(xixˉ)(xixˉ)T=N1XTHX,H=INN11N1NT
最大投影方差的步骤:
(i) 中心化: x i − x ˉ x_i - \bar{x} xixˉ
(ii) 计算每个点 x 1 , . . . , x N x_1,...,x_N x1,...,xN u ⃗ 1 \vec{u}_1 u 1方向上的投影: ( x i − x ˉ ) u ⃗ 1 ,        ∣ ∣ u ⃗ 1 ∣ ∣ = 1 (x_i-\bar{x})\vec{u}_1,\;\;\;||\vec{u}_1|| = 1 (xixˉ)u 1,u 1=1
(iii) 计算投影方差: J = 1 N ∑ i = 1 N [ ( x i − x ˉ ) T u ⃗ 1 ] 2 ,        ∣ ∣ u ⃗ 1 ∣ ∣ = 1 J = \frac{1}{N}\sum\limits_{i=1}^{N}[(x_i-\bar{x})^T\vec{u}_1]^2,\;\;\;||\vec{u}_1|| = 1 J=N1i=1N[(xixˉ)Tu 1]2,u 1=1
(iv) 最大化投影方差求 u ⃗ 1 \vec{u}_1 u 1
u ˉ 1 = a r g m a x u 1      1 N ∑ i = 1 N [ ( x i − x ˉ ) T u ⃗ 1 ] 2        s . t . u ⃗ 1 T u ⃗ 1 = 1 ( u ⃗ 1 往 后 不 带 向 量 符 号 ) \bar{u}_1 = argmax_{u_1}\;\;\frac{1}{N}\sum\limits_{i=1}^{N}[(x_i-\bar{x})^T\vec{u}_1]^2 \\ \;\;\;s.t. \vec{u}_1^T\vec{u}_1 = 1 (\vec{u}_1往后不带向量符号) uˉ1=argmaxu1N1i=1N[(xixˉ)Tu 1]2s.t.u 1Tu 1=1(u 1)
得到:
J = 1 N ∑ i = 1 N [ ( x i − x ˉ ) T u ⃗ 1 ] 2 = 1 N ∑ i = 1 N [ u 1 T ( x i − x ˉ ) ( x i − x ˉ ) T u 1 ]    = u 1 T [ 1 N ∑ i = 1 N ( x i − x ˉ ) ( x i − x ˉ ) T ] u 1 = u 1 T S 2 u 1 J = \frac{1}{N}\sum\limits_{i=1}^{N}[(x_i-\bar{x})^T\vec{u}_1]^2 = \frac{1}{N}\sum\limits_{i=1}^{N}[u_1^T(x_i-\bar{x})(x_i-\bar{x})^Tu_1]\\ \; = u_1^T[\frac{1}{N}\sum\limits_{i=1}^{N}(x_i-\bar{x})(x_i - \bar{x})^T]u_1 = u_1^TS^2u_1 J=N1i=1N[(xixˉ)Tu 1]2=N1i=1N[u1T(xixˉ)(xixˉ)Tu1]=u1T[N1i=1N(xixˉ)(xixˉ)T]u1=u1TS2u1
即:
u ^ 1 = a r g m a x u 1 u 1 T S 2 u 1 ,        s . t . u 1 T u 1 = 1 L ( u 1 , λ ) = u 1 T S 2 u 1 + λ ( 1 − u 1 T u 1 ) ∂ L ∂ u 1 = 2 S 2 u 1 − 2 λ u 1 = 0 即 : S 2 u 1 = λ u 1 \hat{u}_1 = argmax_{u_1}u_1^TS^2u_1,\;\;\;s.t.u_1^Tu_1 = 1\\ L(u_1,\lambda) = u_1^TS^2u_1 + \lambda (1-u_1^Tu_1)\\ \frac{\partial L}{\partial u_1} = 2S^2u_1-2\lambda u_1 = 0\\ 即:S^2u_1 = \lambda u_1 u^1=argmaxu1u1TS2u1,s.t.u1Tu1=1L(u1,λ)=u1TS2u1+λ(1u1Tu1)u1L=2S2u12λu1=0S2u1=λu1
可以看到: λ \lambda λ S 2 S^2 S2的特征值, u 1 u_1 u1 S 2 S^2 S2的特征向量。因此我们只需要对中心化后的协方差矩阵进行特征值分解,得到的特征向量即为投影方向。如果需要进行降维,那么只需要取p的前M个特征向量即可。

4.2.3 实战

reference

https://github.com/datawhalechina/team-learning-data-mining
https://www.phpyuan.com/291822.html

你可能感兴趣的:(机器学习,机器学习,集成学习)