“基于医疗知识图谱的问答系统”代码解析(二)
“基于医疗知识图谱的问答系统”代码解析(三)
“基于医疗知识图谱的问答系统”代码解析(四)
基于医疗知识图谱的问答系统”代码解析(五)
这是我对刘老师所写“基于知识医疗图谱的问答系统”代码的解读。
# 预备知识#!/usr/bin/env python3
# coding: utf-8
# File: MedicalGraph.py
# Author:lhy
# Date: 18-10-
# 构建知识图谱 并将知识图谱放入neo4j
import os
import json
# 为了从neo4j导入知识图谱
from py2neo import Graph,Node
class MedicalGraph:
def __init__(self):
# cur_dir 当前目录 即QASystemOnMedicalKG-master
cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.data_path = os.path.join(cur_dir, 'data/medical.json')
self.g = Graph(
host="127.0.0.1", # neo4j 搭载服务器的ip地址,ifconfig可获取到
http_port=7474, # neo4j 服务器监听的端口号
user="neo4j", # 数据库user name,如果没有更改过,应该是neo4j
password="neo") # passward第一次登入是neo4j,随后即更改密码
'''读取文件'''
def read_nodes(self):
# 共7类节点 初始化为列表
drugs = [] # 药品
foods = [] # 食物
checks = [] # 检查
departments = [] # 科室
producers = [] # 药品大类
diseases = [] # 疾病
symptoms = [] # 症状
disease_infos = [] # 疾病信息
# 构建节点实体关系
rels_department = [] # 科室-科室关系
rels_noteat = [] # 疾病-忌吃食物关系
rels_doeat = [] # 疾病-宜吃食物关系
rels_recommandeat = [] # 疾病-推荐吃食物关系
rels_commonddrug = [] # 疾病-通用药品关系
rels_recommanddrug = [] # 疾病-热门药品关系
rels_check = [] # 疾病-检查关系
rels_drug_producer = [] # 厂商-药物关系
rels_symptom = [] # 疾病症状关系
rels_acompany = [] # 疾病并发关系
rels_category = [] # 疾病与科室之间的关系
count = 0
for data in open(self.data_path, encoding='utf-8'):
# 疾病字典
disease_dict = {}
# 统计疾病数量
count += 1
# 输出统计
print(count)
data_json = json.loads(data)
disease = data_json['name']
disease_dict['name'] = disease
diseases.append(disease)
# 初始化键值对 其值都为字符串
disease_dict['desc'] = ''
disease_dict['prevent'] = ''
disease_dict['cause'] = ''
disease_dict['easy_get'] = ''
disease_dict['cure_department'] = ''
disease_dict['cure_way'] = ''
disease_dict['cure_lasttime'] = ''
disease_dict['symptom'] = ''
disease_dict['cured_prob'] = ''
# 更新关系表
# 如果症状在文件里
if 'symptom' in data_json:
# 症状列表更新
symptoms += data_json['symptom']
# 遍历该病的症状表
for symptom in data_json['symptom']:
# 添加疾病和症状的关系
rels_symptom.append([disease, symptom])
# 疾病并发关系
if 'acompany' in data_json:
for acompany in data_json['acompany']:
# 添加疾病和并发的关系
rels_acompany.append([disease, acompany])
# 更新字典
if 'desc' in data_json:
disease_dict['desc'] = data_json['desc']
if 'prevent' in data_json:
disease_dict['prevent'] = data_json['prevent']
if 'cause' in data_json:
disease_dict['cause'] = data_json['cause']
if 'get_prob' in data_json:
disease_dict['get_prob'] = data_json['get_prob']
if 'easy_get' in data_json:
disease_dict['easy_get'] = data_json['easy_get']
# 部门
if 'cure_department' in data_json:
cure_department = data_json['cure_department']
# 如果只涉及到1个部门 只添加与这一个部门的关系
if len(cure_department) == 1:
rels_category.append([disease, cure_department[0]])
# 如果涉及到2个部门 则把第一个作为大部门
if len(cure_department) == 2:
big = cure_department[0]
small = cure_department[1]
rels_department.append([small, big])
rels_category.append([disease, small])
# 更新疾病表格
disease_dict['cure_department'] = cure_department
departments += cure_department
if 'cure_way' in data_json:
disease_dict['cure_way'] = data_json['cure_way']
if 'cure_lasttime' in data_json:
disease_dict['cure_lasttime'] = data_json['cure_lasttime']
if 'cured_prob' in data_json:
disease_dict['cured_prob'] = data_json['cured_prob']
if 'common_drug' in data_json:
common_drug = data_json['common_drug']
for drug in common_drug:
# 添加每个常规药与疾病的关系
rels_commonddrug.append([disease, drug])
drugs += common_drug
if 'recommand_drug' in data_json:
recommand_drug = data_json['recommand_drug']
drugs += recommand_drug
for drug in recommand_drug:
# 添加每个热门药与疾病的关系
rels_recommanddrug.append([disease, drug])
# 如果有忌口就更新以下数据(忌口,宜吃,推荐吃)
if 'not_eat' in data_json:
not_eat = data_json['not_eat']
for _not in not_eat:
# 添加疾病与忌口的关系
rels_noteat.append([disease, _not])
foods += not_eat
do_eat = data_json['do_eat']
for _do in do_eat:
# 添加疾病与宜吃食物的关系
rels_doeat.append([disease, _do])
foods += do_eat
# 更新推荐表
recommand_eat = data_json['recommand_eat']
for _recommand in recommand_eat:
# 添加疾病和推荐食物的关系
rels_recommandeat.append([disease, _recommand])
foods += recommand_eat
# 更新检查
if 'check' in data_json:
check = data_json['check']
for _check in check:
# 添加疾病与检查之前的关系
rels_check.append([disease, _check])
checks += check
# 更新药店信息
if 'drug_detail' in data_json:
drug_detail = data_json['drug_detail']
# drug_detail 举例易理解
# 假设"drug_detail" :[ "桂林南药布美他尼片(布美他尼片)","皇隆制药注射用呋塞米(注射用呋塞米)" ]
# 输出为 注意这里的[0]是从前面开始 [-1]是从后面开始的
# ['桂林南药布美他尼片', '皇隆制药注射用呋塞米']
# [['桂林南药布美他尼片', '布美他尼片'], ['皇隆制药注射用呋塞米', '注射用呋塞米']]
producer = [i.split('(')[0] for i in drug_detail]
rels_drug_producer += [[i.split('(')[0], i.split('(')[-1].replace(')', '')] for i in drug_detail]
producers += producer
disease_infos.append(disease_dict)
# 返回数据 set()=>强制转化为集合
return set(drugs), set(foods), set(checks), set(departments), set(producers), set(symptoms), set(diseases), disease_infos,\
rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,\
rels_symptom, rels_acompany, rels_category
'''建立节点'''
def create_node(self, label, nodes):
# 传入标签,后面会设置
# node计数单位
count = 0
for node_name in nodes:
node = Node(label, name=node_name)
self.g.create(node)
count += 1
print(count, len(nodes))
return
'''创建知识图谱中心疾病的节点'''
def create_diseases_nodes(self, disease_infos):
# diseasesnode计数单位
count = 0
for disease_dict in disease_infos:
node = Node("Disease", name=disease_dict['name'], desc=disease_dict['desc'],
prevent=disease_dict['prevent'] ,cause=disease_dict['cause'],
easy_get=disease_dict['easy_get'],cure_lasttime=disease_dict['cure_lasttime'],
cure_department=disease_dict['cure_department']
,cure_way=disease_dict['cure_way'] , cured_prob=disease_dict['cured_prob'])
self.g.create(node)
count += 1
print(count)
return
'''创建知识图谱实体节点类型schema'''
def create_graphnodes(self):
Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos,rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,rels_symptom, rels_acompany, rels_category = self.read_nodes()
self.create_diseases_nodes(disease_infos)
self.create_node('Drug', Drugs)
print(len(Drugs))
self.create_node('Food', Foods)
print(len(Foods))
self.create_node('Check', Checks)
print(len(Checks))
self.create_node('Department', Departments)
print(len(Departments))
self.create_node('Producer', Producers)
print(len(Producers))
self.create_node('Symptom', Symptoms)
return
'''创建实体关系边'''
def create_graphrels(self):
Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos, rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug,rels_symptom, rels_acompany, rels_category = self.read_nodes()
# Food是大类
self.create_relationship('Disease', 'Food', rels_recommandeat, 'recommand_eat', '推荐食谱')
self.create_relationship('Disease', 'Food', rels_noteat, 'no_eat', '忌吃')
self.create_relationship('Disease', 'Food', rels_doeat, 'do_eat', '宜吃')
self.create_relationship('Department', 'Department', rels_department, 'belongs_to', '属于')
self.create_relationship('Disease', 'Drug', rels_commonddrug, 'common_drug', '常用药品')
self.create_relationship('Producer', 'Drug', rels_drug_producer, 'drugs_of', '生产药品')
self.create_relationship('Disease', 'Drug', rels_recommanddrug, 'recommand_drug', '好评药品')
self.create_relationship('Disease', 'Check', rels_check, 'need_check', '诊断检查')
self.create_relationship('Disease', 'Symptom', rels_symptom, 'has_symptom', '症状')
self.create_relationship('Disease', 'Disease', rels_acompany, 'acompany_with', '并发症')
self.create_relationship('Disease', 'Department', rels_category, 'belongs_to', '所属科室')
'''创建实体关联边'''
def create_relationship(self, start_node, end_node, edges, rel_type, rel_name):
count = 0
# 去重处理
set_edges = []
for edge in edges:
# 将每对元素以 ### 分割 并添加到set_edges
set_edges.append('###'.join(edge))
all = len(set(set_edges))
for edge in set(set_edges):
# 遍历每对元素
edge = edge.split('###')
p = edge[0]
q = edge[1]
# Cypher语言 Match 类似与SQL中的Select,用来匹配一种搜索模式 匹配p与q
query = "match(p:%s),(q:%s) where p.name='%s'and q.name='%s' create (p)-[rel:%s{name:'%s'}]->(q)" % (
start_node, end_node, p, q, rel_type, rel_name)
try:
self.g.run(query)
count += 1
print(rel_type, count, all)
except Exception as e:
print(e)
return
'''导出数据'''
def export_data(self):
Drugs, Foods, Checks, Departments, Producers, Symptoms, Diseases, disease_infos, rels_check, rels_recommandeat, rels_noteat, rels_doeat, rels_department, rels_commonddrug, rels_drug_producer, rels_recommanddrug, rels_symptom, rels_acompany, rels_category = self.read_nodes()
# 将数据写到文件
f_drug = open('drug.txt', 'w+')
f_food = open('food.txt', 'w+')
f_check = open('check.txt', 'w+')
f_department = open('department.txt', 'w+')
f_producer = open('producer.txt', 'w+')
f_symptom = open('symptoms.txt', 'w+')
f_disease = open('disease.txt', 'w+')
# \n为分割
f_drug.write('\n'.join(list(Drugs)))
f_food.write('\n'.join(list(Foods)))
f_check.write('\n'.join(list(Checks)))
f_department.write('\n'.join(list(Departments)))
f_producer.write('\n'.join(list(Producers)))
f_symptom.write('\n'.join(list(Symptoms)))
f_disease.write('\n'.join(list(Diseases)))
# 关闭文件
f_drug.close()
f_food.close()
f_check.close()
f_department.close()
f_producer.close()
f_symptom.close()
f_disease.close()
return
if __name__ == '__main__':
handler = MedicalGraph()
print("step1:导入图谱节点中")
handler.create_graphnodes()
print("step2:导入图谱边中")
handler.create_graphrels()
注释有的简单就不写在上面了,欢迎指出不足。
当然代码很重要,但是之前的准备也要做好,比如neo4j的配置,因为我也是初入知识图谱,对这方面不太熟悉,就想着去github网找一个代码跑一下,结果经过了两天时间,我才跑成功,可能是我太笨了,不过笨鸟先飞。neo4j的配置 我就弄了挺久,所以推荐下面的链接给各位看官,希望各位看官多多支持,有疑惑随时提出,https://www.it610.com/article/1289837419532722176.htm
后续我会不断更新,希望各位看官多多指点