阿里巴巴面试题基础篇 C++基础篇(二)

● 请你来说一下C++中的智能指针
参考回答:
C++里面的四个智能指针: auto_ptr, shared_ptr, weak_ptr, unique_ptr 其中后三个是c++11支持,并且第一个已经被11弃用。
为什么要使用智能指针:

智能指针的作用是管理一个指针,因为存在以下这种情况:申请的空间在函数结束时忘记释放,造成内存泄漏。使用智能指针可以很大程度上的避免这个问题,因为智能指针就是一个类,当超出了类的作用域是,类会自动调用析构函数,析构函数会自动释放资源。所以智能指针的作用原理就是在函数结束时自动释放内存空间,不需要手动释放内存空间。

1、auto_ptr(c++98的方案,cpp11已经抛弃)

采用所有权模式。

auto_ptr< string> p1 (new string ("I reigned lonely as a cloud.”));

auto_ptr p2;

p2 = p1; //auto_ptr不会报错.

此时不会报错,p2剥夺了p1的所有权,但是当程序运行时访问p1将会报错。所以auto_ptr的缺点是:存在潜在的内存崩溃问题!

2、unique_ptr(替换auto_ptr)

unique_ptr实现独占式拥有或严格拥有概念,保证同一时间内只有一个智能指针可以指向该对象。它对于避免资源泄露(例如“以new创建对象后因为发生异常而忘记调用delete”)特别有用。

采用所有权模式,还是上面那个例子

unique_ptr p3 (new string ("auto")); //#4

unique_ptr p4; //#5

p4 = p3;//此时会报错!!

编译器认为p4=p3非法,避免了p3不再指向有效数据的问题。因此,unique_ptr比auto_ptr更安全。

另外unique_ptr还有更聪明的地方:当程序试图将一个 unique_ptr 赋值给另一个时,如果源 unique_ptr 是个临时右值,编译器允许这么做;如果源 unique_ptr 将存在一段时间,编译器将禁止这么做,比如:

unique_ptr pu1(new string ("hello world"));
unique_ptr pu2;
pu2 = pu1; // #1 not allowed
unique_ptr pu3;
pu3 = unique_ptr(new string ("You")); // #2 allowed

其中#1留下悬挂的unique_ptr(pu1),这可能导致危害。而#2不会留下悬挂的unique_ptr,因为它调用 unique_ptr 的构造函数,该构造函数创建的临时对象在其所有权让给 pu3 后就会被销毁。这种随情况而已的行为表明,unique_ptr 优于允许两种赋值的auto_ptr 。

注:如果确实想执行类似与#1的操作,要安全的重用这种指针,可给它赋新值。C++有一个标准库函数std::move(),让你能够将一个unique_ptr赋给另一个。例如:

unique_ptr ps1, ps2;
ps1 = demo("hello");
ps2 = move(ps1);
ps1 = demo("alexia");
cout << *ps2 << *ps1 << endl;

3、shared_ptr

shared_ptr实现共享式拥有概念。多个智能指针可以指向相同对象,该对象和其相关资源会在“最后一个引用被销毁”时候释放。从名字share就可以看出了资源可以被多个指针共享,它使用计数机制来表明资源被几个指针共享。可以通过成员函数use_count()来查看资源的所有者个数。除了可以通过new来构造,还可以通过传入auto_ptr, unique_ptr,weak_ptr来构造。当我们调用release()时,当前指针会释放资源所有权,计数减一。当计数等于0时,资源会被释放。

shared_ptr 是为了解决 auto_ptr 在对象所有权上的局限性(auto_ptr 是独占的), 在使用引用计数的机制上提供了可以共享所有权的智能指针。

成员函数:

use_count 返回引用计数的个数

unique 返回是否是独占所有权( use_count 为 1)

swap 交换两个 shared_ptr 对象(即交换所拥有的对象)

reset 放弃内部对象的所有权或拥有对象的变更, 会引起原有对象的引用计数的减少

get 返回内部对象(指针), 由于已经重载了()方法, 因此和直接使用对象是一样的.如 shared_ptr sp(new int(1)); sp 与 sp.get()是等价的

4、weak_ptr

weak_ptr 是一种不控制对象生命周期的智能指针, 它指向一个 shared_ptr 管理的对象. 进行该对象的内存管理的是那个强引用的 shared_ptr. weak_ptr只是提供了对管理对象的一个访问手段。weak_ptr 设计的目的是为配合 shared_ptr 而引入的一种智能指针来协助 shared_ptr 工作, 它只可以从一个 shared_ptr 或另一个 weak_ptr 对象构造, 它的构造和析构不会引起引用记数的增加或减少。weak_ptr是用来解决shared_ptr相互引用时的死锁问题,如果说两个shared_ptr相互引用,那么这两个指针的引用计数永远不可能下降为0,资源永远不会释放。它是对对象的一种弱引用,不会增加对象的引用计数,和shared_ptr之间可以相互转化,shared_ptr可以直接赋值给它,它可以通过调用lock函数来获得shared_ptr。

class B;
class A
{
public:
shared_ptr pb_;
~A()
{
cout<<"A delete\n";
}
};
class B
{
public:
shared_ptr pa_;
~B()
{
cout<<"B delete\n";
}
};
void fun()
{
shared_ptr pb(new B());
shared_ptr pa(new A());
pb->pa_ = pa;
pa->pb_ = pb;
cout<

可以看到fun函数中pa ,pb之间互相引用,两个资源的引用计数为2,当要跳出函数时,智能指针pa,pb析构时两个资源引用计数会减一,但是两者引用计数还是为1,导致跳出函数时资源没有被释放(A B的析构函数没有被调用),如果把其中一个改为weak_ptr就可以了,我们把类A里面的shared_ptr pb_; 改为weak_ptr pb_; 运行结果如下,这样的话,资源B的引用开始就只有1,当pb析构时,B的计数变为0,B得到释放,B释放的同时也会使A的计数减一,同时pa析构时使A的计数减一,那么A的计数为0,A得到释放。

注意的是我们不能通过weak_ptr直接访问对象的方法,比如B对象中有一个方法print(),我们不能这样访问,pa->pb_->print(); 英文pb_是一个weak_ptr,应该先把它转化为shared_ptr,如:shared_ptr p = pa->pb_.lock(); p->print();

● 请你回答一下为什么析构函数必须是虚函数?为什么C++默认的析构函数不是虚函数 考点:虚函数 析构函数
参考回答:
将可能会被继承的父类的析构函数设置为虚函数,可以保证当我们new一个子类,然后使用基类指针指向该子类对象,释放基类指针时可以释放掉子类的空间,防止内存泄漏。

C++默认的析构函数不是虚函数是因为虚函数需要额外的虚函数表和虚表指针,占用额外的内存。而对于不会被继承的类来说,其析构函数如果是虚函数,就会浪费内存。因此C++默认的析构函数不是虚函数,而是只有当需要当作父类时,设置为虚函数。

● 请你来说一下函数指针
参考回答:
1、定义
函数指针是指向函数的指针变量。

函数指针本身首先是一个指针变量,该指针变量指向一个具体的函数。这正如用指针变量可指向整型变量、字符型、数组一样,这里是指向函数。

C在编译时,每一个函数都有一个入口地址,该入口地址就是函数指针所指向的地址。有了指向函数的指针变量后,可用该指针变量调用函数,就如同用指针变量可引用其他类型变量一样,在这些概念上是大体一致的。

2、用途:

调用函数和做函数的参数,比如回调函数。

3、示例:

char * fun(char * p) {…} // 函数fun

char * (*pf)(char * p); // 函数指针pf

pf = fun; // 函数指针pf指向函数fun

pf(p); // 通过函数指针pf调用函数fun

● 请你来说一下fork函数
参考回答:
Fork:创建一个和当前进程映像一样的进程可以通过fork( )系统调用:

include

include

pid_t fork(void);

成功调用fork( )会创建一个新的进程,它几乎与调用fork( )的进程一模一样,这两个进程都会继续运行。在子进程中,成功的fork( )调用会返回0。在父进程中fork( )返回子进程的pid。如果出现错误,fork( )返回一个负值。

最常见的fork( )用法是创建一个新的进程,然后使用exec( )载入二进制映像,替换当前进程的映像。这种情况下,派生(fork)了新的进程,而这个子进程会执行一个新的二进制可执行文件的映像。这种“派生加执行”的方式是很常见的。

在早期的Unix系统中,创建进程比较原始。当调用fork时,内核会把所有的内部数据结构复制一份,复制进程的页表项,然后把父进程的地址空间中的内容逐页的复制到子进程的地址空间中。但从内核角度来说,逐页的复制方式是十分耗时的。现代的Unix系统采取了更多的优化,例如Linux,采用了写时复制的方法,而不是对父进程空间进程整体复制。

● 请你来说一下C++中析构函数的作用
参考回答:
析构函数与构造函数对应,当对象结束其生命周期,如对象所在的函数已调用完毕时,系统会自动执行析构函数。
析构函数名也应与类名相同,只是在函数名前面加一个位取反符,例如stud( ),以区别于构造函数。它不能带任何参数,也没有返回值(包括void类型)。只能有一个析构函数,不能重载。

如果用户没有编写析构函数,编译系统会自动生成一个缺省的析构函数(即使自定义了析构函数,编译器也总是会为我们合成一个析构函数,并且如果自定义了析构函数,编译器在执行时会先调用自定义的析构函数再调用合成的析构函数),它也不进行任何操作。所以许多简单的类中没有用显式的析构函数。

如果一个类中有指针,且在使用的过程中动态的申请了内存,那么最好显示构造析构函数在销毁类之前,释放掉申请的内存空间,避免内存泄漏。

类析构顺序:1)派生类本身的析构函数;2)对象成员析构函数;3)基类析构函数。

● 请你来说一下静态函数和虚函数的区别
参考回答:
静态函数在编译的时候就已经确定运行时机,虚函数在运行的时候动态绑定。虚函数因为用了虚函数表机制,调用的时候会增加一次内存开销
● 请你来说一说重载和覆盖
参考回答:
重载:两个函数名相同,但是参数列表不同(个数,类型),返回值类型没有要求,在同一作用域中
重写:子类继承了父类,父类中的函数是虚函数,在子类中重新定义了这个虚函数,这种情况是重写
● 请你来说一说static关键字
参考回答:
1.加了static关键字的全局变量只能在本文件中使用。例如在a.c中定义了static int a=10;那么在b.c中用extern int a是拿不到a的值得,a的作用域只在a.c中。 2.static定义的静态局部变量分配在数据段上,普通的局部变量分配在栈上,会因为函数栈帧的释放而被释放掉。

  1. 对一个类中成员变量和成员函数来说,加了static关键字,则此变量/函数就没有了this指针了,必须通过类名才能访问
    ● 请你说一说strcpy和strlen
    参考回答:
    strcpy是字符串拷贝函数,原型:
    char strcpy(char dest, const char *src);

从src逐字节拷贝到dest,直到遇到'\0'结束,因为没有指定长度,可能会导致拷贝越界,造成缓冲区溢出漏洞,安全版本是strncpy函数。
strlen函数是计算字符串长度的函数,返回从开始到'\0'之间的字符个数。

● 请你说一说你理解的虚函数和多态
参考回答:
多态的实现主要分为静态多态和动态多态,静态多态主要是重载,在编译的时候就已经确定;动态多态是用虚函数机制实现的,在运行期间动态绑定。举个例子:一个父类类型的指针指向一个子类对象时候,使用父类的指针去调用子类中重写了的父类中的虚函数的时候,会调用子类重写过后的函数,在父类中声明为加了virtual关键字的函数,在子类中重写时候不需要加virtual也是虚函数。
虚函数的实现:在有虚函数的类中,类的最开始部分是一个虚函数表的指针,这个指针指向一个虚函数表,表中放了虚函数的地址,实际的虚函数在代码段(.text)中。当子类继承了父类的时候也会继承其虚函数表,当子类重写父类中虚函数时候,会将其继承到的虚函数表中的地址替换为重新写的函数地址。使用了虚函数,会增加访问内存开销,降低效率。
● 请你来回答一下++i和i++的区别
参考回答:
++i先自增1,再返回,i++先返回i,再自增1
● 请你来说一说++i和i++的实现
参考回答:

  1. ++i 实现:
    int& int::operator++()
    {
    *this +=1;
    return *this;
    }
  2. i++ 实现:

1
2
3
4
5
6
const int int::operator(int)
{
int oldValue = this;
++(
this);
return oldValue;
}

● 请你来写个函数在main函数执行前先运行
参考回答:
1
2
3
4
__attribute((constructor))void before()
{
printf("before main\n");
}

● 有段代码写成了下边这样,如果在只修改一个字符的前提下,使代码输出20个hello? for(int i = 0; i < 20; i--) cout << "hello" << endl;
参考回答:
1
2
for(int i = 0; i + 20; i--)
cout << "hello" << endl;

● 请你来说一下智能指针shared_ptr的实现
参考回答:
核心要理解引用计数,什么时候销毁底层指针,还有赋值,拷贝构造时候的引用计数的变化,析构的时候要判断底层指针的引用计数为0了才能真正释放底层指针的内存

template

class SmartPtr

{

private:

T *ptr; //底层真实的指针

int *use_count;//保存当前对象被多少指针引用计数

public:

SmartPtr(T *p); //SmartPtrp(new int(2));

SmartPtr(const SmartPtr&orig);//SmartPtrq(p);

SmartPtr&operator=(const SmartPtr &rhs);//q=p

~SmartPtr();

T operator*(); //为了能把智能指针当成普通指针操作定义解引用操作

T*operator->(); //定义取成员操作

T* operator+(int i);//定义指针加一个常数

int operator-(SmartPtr&t1,SmartPtr&t2);//定义两个指针相减

void getcount() { return *use_count } }; template int SmartPtr::operator-(SmartPtr &t1, SmartPtr &t2) { return t1.ptr-t2.ptr; } template SmartPtr::SmartPtr(T *p) { ptr=p; try { use_count=new int(1); }catch (...) {
delete ptr; //申请失败释放真实指针和引用计数的内存

ptr= nullptr; delete use_count; use_count= nullptr; } } template
SmartPtr::SmartPtr(const SmartPtr &orig) //复制构造函数

{

use_count=orig.use_count;//引用计数保存在一块内存,所有的SmarPtr对象的引用计数都指向这里

this->ptr=orig.ptr;

++(*use_count);//当前对象的引用计数加1

} template SmartPtr& SmartPtr::operator=(const SmartPtr &rhs) {
//重载=运算符,例如SmartPtrp,q; p=q;这个语句中,首先给q指向的对象的引用计数加1,因为p重新指向了q所指的对象,所以p需要先给原来的对象的引用计数减1,如果减一后为0,先释放掉p原来指向的内存,然后讲q指向的对象的引用计数加1后赋值给p

++(rhs.use_count); if((--(use_count))==0) { delete ptr; ptr= nullptr; delete use_count; use_count= nullptr; } ptr=rhs.ptr; use_count=(rhs.use_count); return this; } template SmartPtr::~SmartPtr() { getcount();
if(--(
use_count)==0) //SmartPtr的对象会在其生命周期结束的时候调用其析构函数,在析构函数中检测当前对象的引用计数是不是只有正在结束生命周期的这个SmartPtr引用,如果是,就释放掉,如果不是,就还有其他的SmartPtr引用当前对象,就等待其他的SmartPtr对象在其生命周期结束的时候调用析构函数释放掉

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
getcount();
delete ptr;
ptr= nullptr;
delete use_count;
use_count=nullptr;
}
}
template
T SmartPtr::operator()
{
return ptr;
}
template
T
SmartPtr::operator->()
{
return ptr;
}
template
T
SmartPtr::operator+(int i)
{
T *temp=ptr+i;
return temp;
}
}

● 以下四行代码的区别是什么? const char * arr = "123"; char * brr = "123"; const char crr[] = "123"; char drr[] = "123";
参考回答:
const char * arr = "123";
//字符串123保存在常量区,const本来是修饰arr指向的值不能通过arr去修改,但是字符串“123”在常量区,本来就不能改变,所以加不加const效果都一样

char * brr = "123";

//字符串123保存在常量区,这个arr指针指向的是同一个位置,同样不能通过brr去修改"123"的值

const char crr[] = "123";

//这里123本来是在栈上的,但是编译器可能会做某些优化,将其放到常量区

char drr[] = "123";

//字符串123保存在栈区,可以通过drr去修改

● 请你来说一下C++里是怎么定义常量的?常量存放在内存的哪个位置?
参考回答:
常量在C++里的定义就是一个top-level const加上对象类型,常量定义必须初始化。对于局部对象,常量存放在栈区,对于全局对象,常量存放在全局/静态存储区。对于字面值常量,常量存放在常量存储区。
● 请你来回答一下const修饰成员函数的目的是什么?
参考回答:
const修饰的成员函数表明函数调用不会对对象做出任何更改,事实上,如果确认不会对对象做更改,就应该为函数加上const限定,这样无论const对象还是普通对象都可以调用该函数。

你可能感兴趣的:(阿里巴巴面试题基础篇 C++基础篇(二))