Elasticjob(2.1.4) failover 、misfire及执行线程池分析

Failover

当设置failover为true时候,elasticjob 集群通过zookeeper 的event watcher 监听是否有instance 丢失,然后对丢失instance 对应的分片进行立即执行。

重复一下,failover是立即执行,不是按crontab时间来触发,这个触发是不管丢失的分片是否处于运行状态。

Elasticjob(2.1.4) failover 、misfire及执行线程池分析_第1张图片

Elasticjob 执行和分配是分离的,上图的node data 是instance 的IP+通信端口(instance client port)决定哪个instance 负责执行,但failover执行除外。

以同一 job 有A,B两个instance ,两个instance 各负责1个分片为例:
1、 instance A 异常退出,instance B在秒级收到zookeeper node remove 事件后 重新设置shard 对应 node data 为自己并设置failover 信息
2、 instance B设置failover后立即触发新分片的执行

核心函数如下:

 class JobCrashedJobListener extends AbstractJobListener {
        
        @Override
        protected void dataChanged(final String path, final Type eventType, final String data) {
            if (isFailoverEnabled() && Type.NODE_REMOVED == eventType && instanceNode.isInstancePath(path)) {
                String jobInstanceId = path.substring(instanceNode.getInstanceFullPath().length() + 1);
                if (jobInstanceId.equals(JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId())) {
                    return;
                }
	//注意只检查对应instanceid,如果remove的instance 与sharding 的node data不一致,不会触发
                List<Integer> failoverItems = failoverService.getFailoverItems(jobInstanceId);
 
                if (!failoverItems.isEmpty()) {
                    for (int each : failoverItems) {
                        failoverService.setCrashedFailoverFlag(each);
                        failoverService.failoverIfNecessary();
                    }
                } else {
// 只要分片是对应被remove的instance 就立即触发
                    for (int each : shardingService.getShardingItems(jobInstanceId)) {
                        failoverService.setCrashedFailoverFlag(each);
                        failoverService.failoverIfNecessary();
                    }
                }
            }
        }
}

以上代码要注意只检查对应instanceid,如果remove的instance 与sharding 的node data不一致,不会触发failover。
而根据以下代码

/**
     * 如果需要失效转移, 则执行作业失效转移.
     */
    public void failoverIfNecessary() {
        if (needFailover()) {
            jobNodeStorage.executeInLeader(FailoverNode.LATCH, new FailoverLeaderExecutionCallback());
        }
    }

class FailoverLeaderExecutionCallback implements LeaderExecutionCallback {
        
        @Override
        public void execute() {
            if (JobRegistry.getInstance().isShutdown(jobName) || !needFailover()) {
                return;
            }
            int crashedItem = Integer.parseInt(jobNodeStorage.getJobNodeChildrenKeys(FailoverNode.ITEMS_ROOT).get(0));
            log.info("Failover job '{}' begin, crashed item '{}'.................", jobName, crashedItem);
            jobNodeStorage.fillEphemeralJobNode(FailoverNode.getExecutionFailoverNode(crashedItem), JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId());
            jobNodeStorage.removeJobNodeIfExisted(FailoverNode.getItemsNode(crashedItem));
            // TODO 不应使用triggerJob, 而是使用executor统一调度
            JobScheduleController jobScheduleController = JobRegistry.getInstance().getJobScheduleController(jobName);
            if (null != jobScheduleController) {
                jobScheduleController.triggerJob();
            }
        }

在failover 执行完毕才会去修改sharding 的node data,因此当接管failover的instance 没有执行完failover就shutdown 的话,此时由于node data 与新shutdown instance id不一致 、failover是不会被再次触发的。

因此继续分析以上案例, 以同一 job 有A,B两个instance ,两个instance 各负责1个分片为例:
1、 instance A 异常退出,instance B在秒级收到zookeeper node remove 事件后 重新设置shard 对应 node data 为自己并设置failover 信息
2、 instance B设置failover后立即触发新分片的执行
3、 重新启动一个instance C(PS:进程重新启动由于端口不一样,会认为是新instance)并立即shutdown instance B
4、 如果第1-3步间隔时间短,instance B 还收到zookeeper event,只有1个sharding 在instance C被立即触发
5、 如果1-3 间隔时间长,instance B已经完成instance A 分表执行,instance C会触发instance B 负责2个分片并在执行完毕后接管2个分片直到新instance 加入并重新分片。

Misfire

从代码看在2次正常触发过程中,配置misfire最多执行一次。

Quartz只在执行完毕后执行一次next fire的计算,在计算过程发现misfire 会去调用misfire listener。

调用的stack 信息如下:
Thread [springSimpleJob_QuartzSchedulerThread] (Suspended (breakpoint at line 46 in JobTriggerListener)) 
owns: Object (id=3883) 
JobTriggerListener.triggerMisfired(Trigger) line: 46 
QuartzScheduler.notifyTriggerListenersMisfired(Trigger) line: 1905 
SchedulerSignalerImpl.notifyTriggerListenersMisfired(Trigger) line: 74 
RAMJobStore.applyMisfire(TriggerWrapper) line: 1354 
RAMJobStore.acquireNextTriggers(long, int, long) line: 1412 
QuartzSchedulerThread.run() line: 272 

triggerMisfired 负责设置misfire 标志外,以上堆栈的类都是quartz的类。
Elasticjob triggerMisfired相关代码如下:

 @Override
    public void triggerMisfired(final Trigger trigger) {
        if (null != trigger.getPreviousFireTime()) {
            executionService.setMisfire(shardingService.getLocalShardingItems());
        }
}

而实际执行代码如下:

 if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                    "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName, 
                    shardingContexts.getShardingItemParameters().keySet()));
        }
        return;
    }
    try {
        jobFacade.beforeJobExecuted(shardingContexts);
        //CHECKSTYLE:OFF
    } catch (final Throwable cause) {
        //CHECKSTYLE:ON
        jobExceptionHandler.handleException(jobName, cause);
    }
    execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);
    while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
        jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
        execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
    }

可以看出在正常执行完毕后再去触发misfire一次,而且是顺序执行。

执行线程池管理

Elasticjob 默认为每个job 创建CORE*2的线程池队列,核心代码如下

public final class DefaultExecutorServiceHandler implements ExecutorServiceHandler {
    
    @Override
    public ExecutorService createExecutorService(final String jobName) {
        return new ExecutorServiceObject("inner-job-" + jobName, Runtime.getRuntime().availableProcessors() * 2).createExecutorService();
    }
}

public ExecutorServiceObject(final String namingPattern, final int threadSize) {
        workQueue = new LinkedBlockingQueue<>();
        threadPoolExecutor = new ThreadPoolExecutor(threadSize, threadSize, 5L, TimeUnit.MINUTES, workQueue, 
                new BasicThreadFactory.Builder().namingPattern(Joiner.on("-").join(namingPattern, "%s")).build());
        threadPoolExecutor.allowCoreThreadTimeOut(true);
    }
    

每次执行通过以下代码获取对应的执行线程池,没有就去新建:

/**
     * 获取线程池服务.
     * 
     * @param jobName 作业名称
     * @param executorServiceHandler 线程池服务处理器
     * @return 线程池服务
     */
    public static synchronized ExecutorService getExecutorServiceHandler(final String jobName, final ExecutorServiceHandler executorServiceHandler) {
        if (!REGISTRY.containsKey(jobName)) {
            REGISTRY.put(jobName, executorServiceHandler.createExecutorService(jobName));
        }
        return REGISTRY.get(jobName);
    }

因此如果job很多,会创建大量的线程,如果同时运行的job多就会带来频繁的Thread Context 切换。

如果都是短时间可以执行job,可以配置job的
executor-service-handler=“com.dangdang.ddframe.job.custom. DefaultExecutorServiceHandler”
并使用以下代码替换默认线程池

public final class DefaultExecutorServiceHandler implements ExecutorServiceHandler {
	
	final ExecutorService executorService=       new ExecutorServiceObject("innerjob-executepool", Runtime.getRuntime().availableProcessors() * N).createExecutorService();

    
    @Override
    public ExecutorService createExecutorService(final String jobName) {
    	  return executorService;
    }
}

即共用一个线程池,执行效率可能更高。

你可能感兴趣的:(elasticjob,java,开发语言)