寻址方式就是处理器根据指令中给出的地址信息来寻找有效地址的方式,是确定本条指令的数据地址以及下一条要执行的指令地址的方法。
在存储器中,操作数或指令字写入或读出的方式,有地址指定方式、相联存储方式和堆栈存取方式。几乎所有的计算机,在内存中都采用地址指定方式。当采用地址指定方式时,形成操作数或指令地址的方式称为寻址方式。寻址方式分为两类,即指令寻址方式和数据寻址方式。
形成操作数的有效地址的方法称为操作数的寻址方式。
微机系统有七种基本的寻址方式:立即寻址方式、直接寻址方式、寄存器寻址方式、寄存器间接寻址方式、寄存器相对寻址方式、基址加变址寻址方式、相对基址加变址寻址方式等。其中,后五种寻址方式是确定内存单元有效地址的五种不同的计算方法,用它们可方便地实现对数组元素的访问。
操作数作为指令的一部分而直接写在指令中,这种操作数称为立即数,这种寻址方式也就称为立即数寻址方式。
立即数可以是8位、16位或32位,该数值紧跟在操作码之后。如果立即数为16位或32位,那么,它将按“高高低低”的原则进行存储。例如:
MOV AH, 80H ADD AX, 1234H MOV ECX, 123456H
MOV B1, 12H MOV W1, 3456H ADD D1, 32123456H
其中:B1、W1和D1分别是字节、字和双字单元。
以上指令中的第二操作数都是立即数,在汇编语言中,规定:立即数不能作为指令中的第二操作数。该规定与高级语言中“赋值语句的左边不能是常量”的规定相一致。
立即数寻址方式通常用于对通用寄存器或内存单元赋初值。图是指令“MOV AX, 4576H”存储形式和执行示意图。
指令所要的操作数存放在内存中,在指令中直接给出该操作数的有效地址,这种寻址方式为直接寻址方式。
在通常情况下,操作数存放在数据段中,所以,其物理地址将由数据段寄存器DS和指令中给出的有效地址直接形成,但如果使用段超越前缀,那么,操作数可存放在其它段。
例:假设有指令:MOV BX, [1234H],在执行时,(DS)=2000H,内存单元21234H的值为5213H。问该指令执行后,BX的值是什么?
解:根据直接寻址方式的寻址规则,把该指令的具体执行过程用下图来表示。从图中,可看出执行该指令要分三部分:
由于1234H是一个直接地址,它紧跟在指令的操作码之后,随取指令而被读出;访问数据段的段寄存器是DS,所以,用DS的值和偏移量1234H相加,得存储单元的物理地址:21234H;取单元21234H的值5213H,并按“高高低低”的原则存入寄存器BX中。
所以,在执行该指令后,BX的值就为5213H。
由于数据段的段寄存器默认为DS,如果要指定访问其它段内的数据,可在指令中用段前缀的方式显式地书写出来。
下面指令的目标操作数就是带有段前缀的直接寻址方式。
MOV ES:[1000H], AX
直接寻址方式常用于处理内存单元的数据,其操作数是内存变量的值,该寻址方式可在64K字节的段内进行寻址。
注意:立即寻址方式和直接寻址方式的书写格式的不同,直接寻址的地址要写在括号“[”,“]”内。在程序中,直接地址通常用内存变量名来表示,如:MOV BX, VARW,其中,VARW是内存字变量。
试比较下列指令中源操作数的寻址方式(VARW是内存字变量):
MOV AX, 1234H MOV AX, [1234H] ;前者是立即寻址,后者是直接寻址
MOV AX, VARW MOV AX, [VARW] ;两者是等效的,均为直接寻址
指令所要的操作数已存储在某寄存器中,或把目标操作数存入寄存器。把在指令中指出所使用寄存器(即:寄存器的助忆符)的寻址方式称为寄存器寻址方式。
指令中可以引用的寄存器及其符号名称如下:
8位寄存器有:AH、AL、BH、BL、CH、CL、DH和DL等;
16位寄存器有:AX、BX、CX、DX、SI、DI、SP、BP和段寄存器等;
32位寄存器有:EAX、EBX、ECX、EDX、ESI、EDI、ESP和EBP等。
寄存器寻址方式是一种简单快捷的寻址方式,源和目的操作数都可以是寄存器。
1、源操作数是寄存器寻址方式
如:ADD VARD, EAX ADD VARW, AX MOV VARB, BH等。
其中:VARD、VARW和VARB是双字,字和字节类型的内存变量。在第4章将会学到如何定义它们。
2、目的操作数是寄存器寻址方式
如:ADD BH, 78h
ADD AX, 1234h
MOV EBX, 12345678H等。
3、源和目的操作数都是寄存器寻址方式
如:MOV EAX, EBX
MOV AX, BX
MOV DH, BL等。
由于指令所需的操作数已存储在寄存器中,或操作的结果存入寄存器,这样,在指令执行过程中,会减少读/写存储器单元的次数,所以,使用寄存器寻址方式的指令具有较快的执行速度。通常情况下,我们提倡在编写汇编语言程序时,应尽可能地使用寄存器寻址方式,但也不要把它绝对化。
操作数在存储器中,操作数的有效地址用SI、DI、BX和BP等四个寄存器之一来指定,称这种寻址方式为寄存器间接寻址方式。
该寻址方式物理地址的计算方法如下:
寄存器间接寻址方式读取存储单元的原理如图所示。
在不使用段超越前缀的情况下,有下列规定:
若有效地址用SI、DI和BX等之一来指定,则其缺省的段寄存器为DS;
若有效地址用BP来指定,则其缺省的段寄存器为SS(即:堆栈段)。
例:假设有指令:MOV BX,[DI],在执行时,(DS)=1000H,(DI)=2345H,存储单元12345H的内容是4354H。问执行指令后,BX的值是什么?
解:根据寄存器间接寻址方式的规则,在执行本例指令时,寄存器DI的值不是操作数,而是操作数的地址。该操作数的物理地址应由DS和DI的值形成,即:
PA=(DS)*16+DI=1000H*16+2345H=12345H
所以,该指令的执行效果是:把从物理地址为12345H开始的一个字的值传送给BX。
其执行过程如图所示。
操作数在存储器中,其有效地址是一个基址寄存器(BX、BP)或变址寄存器(SI、DI)的内容和指令中的8位/16位偏移量之和。其有效地址的计算公式如公式所示。
在不使用段超越前缀的情况下,有下列规定:
若有效地址用SI、DI和BX等之一来指定,则其缺省的段寄存器为DS;
若有效地址用BP来指定,则其缺省的段寄存器为SS。
指令中给出的8位/16位偏移量用补码表示。在计算有效地址时,如果偏移量是8位,则进行符号扩展成16位。当所得的有效地址超过0FFFFH,则取其64K的模。
例:假设指令:MOV BX, [SI+100H],在执行它时,(DS)=1000H,(SI)=2345H,内存单元12445H的内容为2715H,问该指令执行后,BX的值是什么?
解:根据寄存器相对寻址方式的规则,在执行本例指令时,源操作数的有效地址EA为:
EA=(SI)+100H=2345H+100H=2445H
该操作数的物理地址应由DS和EA的值形成,即:
PA=(DS)*16+EA=1000H*16+2445H=12445H。
所以,该指令的执行效果是:把从物理地址为12445H开始的一个字的值传送给BX。
其执行过程如图所示。
操作数在存储器中,其有效地址是一个基址寄存器(BX、BP)和一个变址寄存器(SI、DI)的内容之和。其有效地址的计算公式如公式所示。
在不使用段超越前缀的情况下,规定:如果有效地址中含有BP,则缺省的段寄存器为SS;否则,缺省的段寄存器为DS。
例:假设指令:MOV BX, [BX+SI],在执行时,(DS)=1000H,(BX)=2100H,(SI)=0011H,内存单元12111H的内容为1234H。问该指令执行后,BX的值是什么?
解:根据基址加变址寻址方式的规则,在执行本例指令时,源操作数的有效地址EA为:
EA=(BX)+(SI)=2100H+0011H=2111H
该操作数的物理地址应由DS和EA的值形成,即:
PA=(DS)*16+EA=1000H*16+2111H=12111H
所以,该指令的执行效果是:把从物理地址为12111H开始的一个字的值传送给BX。
其执行过程如图所示。
操作数在存储器中,其有效地址是一个基址寄存器(BX、BP)的值、一个变址寄存器(SI、DI)的值和指令中的8位/16位偏移量之和。其有效地址的计算公式如公式所示。
在不使用段超越前缀的情况下,规定:如果有效地址中含有BP,则其缺省的段寄存器为SS;否则,其缺省的段寄存器为DS。
指令中给出的8位/16位偏移量用补码表示。在计算有效地址时,如果偏移量是8位,则进行符号扩展成16位。当所得的有效地址超过0FFFFH,则取其64K的模。
例:假设指令:MOV AX, [BX+SI+200H],在执行时,(DS)=1000H,(BX)=2100H,(SI)=0010H,内存单元12310H的内容为1234H。问该指令执行后,AX的值是什么?
解:根据相对基址加变址寻址方式的规则,在执行本例指令时,源操作数的有效地址EA为:
EA=(BX)+(SI)+200H=2100H+0010H+200H=2310H
该操作数的物理地址应由DS和EA的值形成,即:
PA=(DS)*16+EA=1000H*16+2310H=12310H
所以,该指令的执行效果是:把从物理地址为12310H开始的一个字的值传送给AX。其执行过程如图所示。
从相对基址加变址这种寻址方式来看,由于它的可变因素较多,看起来就显得复杂些,但正因为其可变因素多,它的灵活性也就很高。比如:
用D1[i]来访问一维数组D1的第i个元素,它的寻址有一个自由度,用D2[i][j]来访问二维数组D2的第i行、第j列的元素,其寻址有二个自由度。
多一个可变的量,其寻址方式的灵活度也就相应提高了。
相对基址加变址寻址方式有多种等价的书写方式,下面的书写格式都是正确的,并且其寻址含义也是一致的。
MOV AX, [BX+SI+1000H] MOV AX, 1000H[BX+SI]
MOV AX, 1000H[BX][SI] MOV AX, 1000H[SI][BX]
但书写格式BX [1000+SI]和SI[1000H+BX]等是错误的,即所用寄存器不能在“[“,”]”之外,该限制对寄存器相对寻址方式的书写也同样起作用。相对基址加变址寻址方式是以上7种寻址方式中最复杂的一种寻址方式,它可变形为其它类型的存储器寻址方式。下表列举出该寻址方式与其它寻址方式之间的变形关系。
1、立即寻址:操作数在指令中,如:MOV AL,12H(源操作数)
2、寄存器寻址:操作数在指令中的寄存器中,如:MOV AL,BH(源操作数)
3、直接寻址:操作数所在存储器的有效地址在指令中,如:MOV AL,[12H](源操作数)
4、寄存器间接寻址:操作数所在存储器的有效地址在指令中的寄存器中,如:MOV AL,[BX](源操作数)
5、寄存器相对寻址:操作数所在存储器的有效地址为指令中的寄存器加位移量,如:MOV AL,[BX+12H]或MOV AL,DAVL[BP](源操作数)
6、基址变址寻址:操作数所在存储器的有效地址为指令中的基址寄存器加变址寄存器,如:MOV AL,[BX+SI]或MOV AL,[BX][SI](源操作数)
7、相对基址变址寻址:操作数所在存储器的有效地址为指令中的基址寄存器加变址寄存器,再加位移量,如:MOV AL,[BX+SI+12H]或MOV AL,DAVL[BX][SI](源操作数)
。
参考:微机原理——寻址方式总结