kube-scheduler深度剖析与开发(二)

为了深入学习 kube-scheduler,本系从源码和实战角度深度学 习kube-scheduler,该系列一共分6篇文章,如下:

  • kube-scheduler 整体架构
  • 初始化一个 scheduler
  • 一个 Pod 是如何调度的
  • 如何开发一个属于自己的scheduler插件
  • 开发一个 prefilter 扩展点的插件
  • 开发一个 socre 扩展点的插件

上一篇,我们说了 kube-scheduler 的整体架构,是从整体的架构方面来考虑的,本文我们说说 kube-scheduler 是如何初始化出来的,kube-scheduler 里面都有些什么东西。

因为 kube-scheduler 源码内容比较多,对于那些不是关键的东西,就忽略不做讨论。

Scheduler之Profiles

下面我们先看下 Scheduler 的结构

type Scheduler struct {
   Cache internalcache.Cache
   
   Extenders []framework.Extender
   
   NextPod func() *framework.QueuedPodInfo
   
   FailureHandler FailureHandlerFn
   
   SchedulePod func(ctx context.Context, fwk framework.Framework, state  *framework.CycleState, pod *v1.Pod) (ScheduleResult, error)
   
   StopEverything <-chan struct{}
   
   SchedulingQueue internalqueue.SchedulingQueue
   
   Profiles profile.Map
   
   client clientset.Interface
   
   nodeInfoSnapshot *internalcache.Snapshot
   
   percentageOfNodesToScore int32
   
   nextStartNodeIndex int
}

上一篇我们说过,为一个 Pod 选择一个 Node 是按照固定顺序运行扩展点的;在扩展点内,是按照插件注册的顺序运行插件,如下图

kube-scheduler深度剖析与开发(二)_第1张图片

上面的这些扩展点在 kube-scheduler 中是固定的,而且也不支持增加扩展点(实际上有这些扩展点已经足够了),而且扩展点顺序也是固定执行的。

下图是插件(以preFilter为例)运行的顺序,扩展点内的插件,你既可以调整插件的执行顺序(实际很少会修改默认的插件执行顺序),可以关闭某个内置插件,还可以增加自己开发的插件。

kube-scheduler深度剖析与开发(二)_第2张图片

那么这些插件是怎么注册的,注册在哪里呢,自己开发的插件又是怎么加进去的呢?

我们来看下 Scheduler 里面最重要的一个成员:Profiles profile.Map

// 路径:pkg/scheduler/profile/profile.go

// Map holds frameworks indexed by scheduler name.
type Map map[string]framework.Framework

Profiles 是一个 key 为 scheduler name,value 是 framework.Framework 的map,表示根据 scheduler name 来获取 framework.Framework 类型的值,所以可以有多个scheduler。或许你在使用 k8s 的时候没有关注过 pod 或 deploment 里面的 scheduler,因为你没有指定的话,k8s 就会自动设置为默认的调度器,下图是 deployment 中未指定 schedulerName 被设置了默认调度器的一个deployment

kube-scheduler深度剖析与开发(二)_第3张图片](/img/bVc7ywM)

假设现在我想要使用自己开发的一个名叫 my-scheduler-1 的调度器,这个调度器在 preFilter 扩展点中增加了 zoneLabel 插件,怎么做?

使用 kubeadm 部署的 k8s 集群,会在 /etc/kubernetes/manifests 目录下创建 kube-scheduler.yaml 文件,kubelet 会根据这个文件自动拉起来一个静态 Pod,一个 kube-scheduler pod就被创建了,而且这个 kube-scheduler 运行的参数是直接在命令行上指定的。

apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  labels:
    component: kube-scheduler
    tier: control-plane
  name: kube-scheduler
  namespace: kube-system
spec:
  containers:
  - command:
    - kube-scheduler
    - --address=0.0.0.0
    - --authentication-kubeconfig=/etc/kubernetes/scheduler.conf
    - --authorization-kubeconfig=/etc/kubernetes/scheduler.conf
    - --bind-address=127.0.0.1
    - --kubeconfig=/etc/kubernetes/scheduler.conf
    - --leader-elect=true
    image: k8s.gcr.io/kube-scheduler:v1.16.8
    
    ....

其实 kube-scheduler 运行的时候可以指定配置文件,而不直接把参数写在启动命令上,如下形式。

./kube-scheduler --config /etc/kube-scheduler.conf

于是乎,我们就可以在配置文件中配置我们调度器的插件了

apiVersion: kubescheduler.config.k8s.io/v1beta2
kind: KubeSchedulerConfiguration
leaderElection:
  leaderElect: true
clientConnection:
  kubeconfig: "/etc/kubernetes/scheduler.conf"

profiles:
- schedulerName: my-scheduler
  plugins:
    preFilter:
      enabled:
        - name: zoneLabel
      disabled:
        - name: NodePorts

我们可以使用 enabled,disabled 开关来关闭或打开某个插件。
通过配置文件,还可以控制扩展点的调用顺序,规则如下:

  • 如果某个扩展点没有配置对应的扩展,调度框架将使用默认插件中的扩展
  • 如果为某个扩展点配置且激活了扩展,则调度框架将先调用默认插件的扩展,再调用配置中的扩展
  • 默认插件的扩展始终被最先调用,然后按照 KubeSchedulerConfiguration 中扩展的激活 enabled 顺序逐个调用扩展点的扩展
  • 可以先禁用默认插件的扩展,然后在 enabled 列表中的某个位置激活默认插件的扩展,这种做法可以改变默认插件的扩展被调用时的顺序

还可以添加多个调度器,在 deployment 等控制器中指定自己想要使用的调度器即可:

apiVersion: kubescheduler.config.k8s.io/v1beta2
kind: KubeSchedulerConfiguration
leaderElection:
  leaderElect: true
clientConnection:
  kubeconfig: "/etc/kubernetes/scheduler.conf"

profiles:
- schedulerName: my-scheduler-1
  plugins:
    preFilter:
      enabled:
        - name: zoneLabel
        
- schedulerName: my-scheduler-2
  plugins:
    queueSort:
      enabled:
        - name: mySort

当然了,现在我们在配置文件中定义的 mySort,zoneLabel 这样的插件还不能使用,我们需要开发具体的插件注册进去,才能正常运行,后面的文章会详细讲。

好了,现在 Profiles 成员(一个map)已经包含了两个元素,{"my-scheduler-1": framework.Framework ,"my-scheduler-2": framework.Framework}。当一个 Pod 需要被调度的时候,kube-scheduler 会先取出 Pod 的 schedulerName 字段的值,然后通过 Profiles[schedulerName],拿到 framework.Framework 对象,进而使用这个对象开始调度,我们可以用下面这种张图总结下上面描述的各个对象的关系。

kube-scheduler深度剖析与开发(二)_第4张图片

那么重点就来到了 framework.Framework ,下面是 framework.Framework 的定义:

// pkg/scheduler/framework/interface.go

type Framework interface {
   Handle
   
   QueueSortFunc() LessFunc

   RunPreFilterPlugins(ctx context.Context, state *CycleState, pod *v1.Pod) (*PreFilterResult, *Status)

   RunPostFilterPlugins(ctx context.Context, state *CycleState, pod *v1.Pod, filteredNodeStatusMap NodeToStatusMap) (*PostFilterResult, *Status)

   RunPreBindPlugins(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string) *Status

   RunPostBindPlugins(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string)

   RunReservePluginsReserve(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string) *Status

   RunReservePluginsUnreserve(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string)

   RunPermitPlugins(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string) *Status

   WaitOnPermit(ctx context.Context, pod *v1.Pod) *Status

   RunBindPlugins(ctx context.Context, state *CycleState, pod *v1.Pod, nodeName string) *Status

   HasFilterPlugins() bool

   HasPostFilterPlugins() bool

   HasScorePlugins() bool

   ListPlugins() *config.Plugins

   ProfileName() string
}

Framework 是一个接口,需要实现的方法大部分形式为:Run*Plugins,也就是运行某个扩展点的插件,那么只要实现这个 Framework 接口就可以对 Pod 进行调度了。那么需要用户自己实现么?答案是不用,kube-scheduler 已经有一个该接口的实现:frameworkImpl

// pkg/scheduler/framework/runtime/framework.go

type frameworkImpl struct {
    registry             Registry
    snapshotSharedLister framework.SharedLister
    waitingPods          *waitingPodsMap
    scorePluginWeight    map[string]int
    queueSortPlugins     []framework.QueueSortPlugin
    preFilterPlugins     []framework.PreFilterPlugin
    filterPlugins        []framework.FilterPlugin
    postFilterPlugins    []framework.PostFilterPlugin
    preScorePlugins      []framework.PreScorePlugin
    scorePlugins         []framework.ScorePlugin
    reservePlugins       []framework.ReservePlugin
    preBindPlugins       []framework.PreBindPlugin
    bindPlugins          []framework.BindPlugin
    postBindPlugins      []framework.PostBindPlugin
    permitPlugins        []framework.PermitPlugin

    clientSet       clientset.Interface
    kubeConfig      *restclient.Config
    eventRecorder   events.EventRecorder
    informerFactory informers.SharedInformerFactory

    metricsRecorder *metricsRecorder
    profileName     string

    extenders []framework.Extender
    framework.PodNominator

    parallelizer parallelize.Parallelizer
}

frameworkImpl 这个结构体里面包含了每个扩展点插件数组,所以某个扩展点要被执行的时候,只要遍历这个数组里面的所有插件,然后执行这些插件就可以了。我们看看 framework.FilterPlugin 是怎么定义的(其他的也类似):


type Plugin interface {
    Name() string
}

type FilterPlugin interface {
    Plugin
    Filter(ctx context.Context, state *CycleState, pod *v1.Pod, nodeInfo *NodeInfo) *Status
}

插件数组的类型是一个接口,那么某个插件只要实现了这个接口就可以被运行。实际上,我们前面说的那些默认插件,都实现了这个接口,在目录 pkg/scheduler/framework/plugins 目录下面包含了所有内置插件的实现,主要就是对上面说的这个插件接口的实现。我们可以简单用图描述下 Pod被调度的时候执行插件的流程

kube-scheduler深度剖析与开发(二)_第5张图片

那么这些默认插件是怎么加到framework里面的,自定义插件又是怎么加进来的呢?

分三步:

  1. 根据配置文件(--config指定的)、系统默认的插件,按照扩展点生成需要被加载的插件数组(包括插件名字,权重信息),也就是初始化 KubeSchedulerConfiguration 中的 Profiles 成员。
type KubeSchedulerConfiguration struct {
  
  metav1.TypeMeta

  Parallelism int32

  LeaderElection componentbaseconfig.LeaderElectionConfiguration

  ClientConnection componentbaseconfig.ClientConnectionConfiguration
  
  HealthzBindAddress string

  MetricsBindAddress string

  componentbaseconfig.DebuggingConfiguration

  PercentageOfNodesToScore int32

  PodInitialBackoffSeconds int64

  PodMaxBackoffSeconds int64

  Profiles []KubeSchedulerProfile

  Extenders []Extender
}
  1. 创建 registry 集合,这个集合内是每个插件实例化函数,也就是 插件名字->插件实例化函数的映射,通俗一点说就是告诉系统:1.我叫王二; 2. 你应该怎么把我创建出来。那么张三、李四、王五分别告诉系统怎么创建自己,就组成了这个集合。

type PluginFactory = func(configuration runtime.Object, f framework.Handle) (framework.Plugin, error)

type Registry map[string]PluginFactory

这个集合是内置(叫inTree)默认的插件映射和用户自定义(outOfTree)的插件映射的并集,内置的映射通过下面函数创建:

// pkg/scheduler/framework/plugins/registry.go

func NewInTreeRegistry() runtime.Registry {

    fts := plfeature.Features{
        EnableReadWriteOncePod:                       feature.DefaultFeatureGate.Enabled(features.ReadWriteOncePod),
        EnableVolumeCapacityPriority:                 feature.DefaultFeatureGate.Enabled(features.VolumeCapacityPriority),
        EnableMinDomainsInPodTopologySpread:          feature.DefaultFeatureGate.Enabled(features.MinDomainsInPodTopologySpread),
        EnableNodeInclusionPolicyInPodTopologySpread: feature.DefaultFeatureGate.Enabled(features.NodeInclusionPolicyInPodTopologySpread),
    }

    return runtime.Registry{
        selectorspread.Name:                  selectorspread.New,
        imagelocality.Name:                   imagelocality.New,
        tainttoleration.Name:                 tainttoleration.New,
        nodename.Name:                        nodename.New,
        nodeports.Name:                       nodeports.New,
        nodeaffinity.Name:                    nodeaffinity.New,
        podtopologyspread.Name:               runtime.FactoryAdapter(fts, podtopologyspread.New),
        nodeunschedulable.Name:               nodeunschedulable.New,
        noderesources.Name:                   runtime.FactoryAdapter(fts, noderesources.NewFit),
        noderesources.BalancedAllocationName: runtime.FactoryAdapter(fts, noderesources.NewBalancedAllocation),
        volumebinding.Name:                   runtime.FactoryAdapter(fts, volumebinding.New),
        volumerestrictions.Name:              runtime.FactoryAdapter(fts, volumerestrictions.New),
        volumezone.Name:                      volumezone.New,
        nodevolumelimits.CSIName:             runtime.FactoryAdapter(fts, nodevolumelimits.NewCSI),
        nodevolumelimits.EBSName:             runtime.FactoryAdapter(fts, nodevolumelimits.NewEBS),
        nodevolumelimits.GCEPDName:           runtime.FactoryAdapter(fts, nodevolumelimits.NewGCEPD),
        nodevolumelimits.AzureDiskName:       runtime.FactoryAdapter(fts, nodevolumelimits.NewAzureDisk),
        nodevolumelimits.CinderName:          runtime.FactoryAdapter(fts, nodevolumelimits.NewCinder),
        interpodaffinity.Name:                interpodaffinity.New,
        queuesort.Name:                       queuesort.New,
        defaultbinder.Name:                   defaultbinder.New,
        defaultpreemption.Name:               runtime.FactoryAdapter(fts, defaultpreemption.New),
    }
}

那么用户自定义的插件怎么来的呢?这里咱们先不展开,在后面插件开发的时候再详细讲,不影响我们理解。我们假设用户自定义的也已经生成了 registry,下面的代码就是把他们合并在一起

// pkg/scheduler/scheduler.go

registry := frameworkplugins.NewInTreeRegistry()

if err := registry.Merge(options.frameworkOutOfTreeRegistry); err != nil {
    return nil, err
}

现在内置插件和系统默认插件的实例化函数映射已经创建好了

  1. 将(1)中每个扩展点的每个插件(就是插件名字)拿出来,去(2)的映射(map)中获取实例化函数,然后运行这个实例化函数,最后把这个实例化出来的插件(可以被运行的)追加到上面提到过的 frameworkImpl 中对应扩展点数组中,这样后面要运行某个扩展点插件的时候就可以遍历运行就可以了。我们可以把上述过程用下图表示

kube-scheduler深度剖析与开发(二)_第6张图片

Scheduler 之 SchedulingQueue

上面我们介绍了 Scheduler 第一个关键成员 Profiles 的初始化和作用,下面我们来谈谈第二个关键成员:SchedulingQueue

// pkg/scheduler/scheduler.go

podQueue := internalqueue.NewSchedulingQueue(
    profiles[options.profiles[0].SchedulerName].QueueSortFunc(),
    informerFactory,
    // 1s
    internalqueue.WithPodInitialBackoffDuration(time.Duration(options.podInitialBackoffSeconds)*time.Second),
    // 10s
    internalqueue.WithPodMaxBackoffDuration(time.Duration(options.podMaxBackoffSeconds)*time.Second),
    internalqueue.WithPodNominator(nominator),
    internalqueue.WithClusterEventMap(clusterEventMap),
    // 5min
    internalqueue.WithPodMaxInUnschedulablePodsDuration(options.podMaxInUnschedulablePodsDuration),
)
func NewSchedulingQueue(
    lessFn framework.LessFunc,
    informerFactory informers.SharedInformerFactory,
    opts ...Option) SchedulingQueue {
    return NewPriorityQueue(lessFn, informerFactory, opts...)
}
type PriorityQueue struct {
  
  framework.PodNominator

  stop  chan struct{}

  clock clock.Clock

  podInitialBackoffDuration time.Duration

  podMaxBackoffDuration time.Duration

  podMaxInUnschedulablePodsDuration time.Duration

  lock sync.RWMutex

  cond sync.Cond

  activeQ *heap.Heap

  podBackoffQ *heap.Heap

  unschedulablePods *UnschedulablePods

  schedulingCycle int64

  moveRequestCycle int64

  clusterEventMap map[framework.ClusterEvent]sets.String

  closed bool

  nsLister listersv1.NamespaceLister
}

SchedulingQueue 是一个 internalqueue.SchedulingQueue 的接口类型,PriorityQueue 对这个接口进行了实现,创建 Scheduler 的时候 SchedulingQueue 会被 PriorityQueue 类型对象赋值。

PriorityQueue 中有关键的3个成员:activeQ、podBackoffQ、unschedulablePods。

  • activeQ 是一个优先队列,用来存放待调度的 Pod,Pod 按照优先级存放在队列中
  • podBackoffQ 用来存放异常的 Pod, 该队列里面的 Pod 会等待一定时间后被移动到 activeQ 里面重新被调度
  • unschedulablePods 中会存放调度失败的 Pod,它不是队列,而是使用 map 来存放的,这个 map 里面的 Pod 在一定条件下会被移动到 activeQ 或 podBackoffQ 中

PriorityQueue 还有两个方法:flushUnschedulablePodsLeftover 和 flushBackoffQCompleted

  • flushUnschedulablePodsLeftover:调度失败的 Pod 如果满足一定条件,这个函数会将这种 Pod 移动到 activeQ 或 podBackoffQ
  • flushBackoffQCompleted:运行异常的 Pod 等待时间完成后,flushBackoffQCompleted 将该 Pod 移动到 activeQ

Scheduler 在启动的时候,会创建2个协程来定期运行这两个函数

func (p *PriorityQueue) Run() {
   go wait.Until(p.flushBackoffQCompleted, 1.0*time.Second, p.stop)
   go wait.Until(p.flushUnschedulablePodsLeftover, 30*time.Second, p.stop)
}

上面是定期对 Pod 在这些队列之间的转换,那么除了定期刷新的方式,还有下面情况也会触发队列转换:

  • 有新节点加入集群
  • 节点配置或状态发生变化
  • 已经存在的 Pod 发生变化
  • 集群内有Pod被删除

至于他们之间是如何转换的,我们在下一篇文章里面详细介绍

Scheduler 之 cache

要说 cache 最大的作用就是提升 Scheduler 的效率,降低 kube-apiserver(本质是 etcd)的压力,在调用各个插件计算的时候所需要的 Node 信息和其他 Pod 信息都缓存在本地,在需要使用的时候直接从缓存获取即可,而不需要调用 api 从 kube-apiserver 获取。cache 类型是 internalcache.Cache 的接口,cacheImpl 实现了这个接口。下面是 cacheImpl 的结构

type Cache interface 
  NodeCount() int
  PodCount() (int, error)
  AssumePod(pod *v1.Pod) error
  FinishBinding(pod *v1.Pod) error
  ForgetPod(pod *v1.Pod) error
  AddPod(pod *v1.Pod) error
  UpdatePod(oldPod, newPod *v1.Pod) error
  RemovePod(pod *v1.Pod) error
  GetPod(pod *v1.Pod) (*v1.Pod, error)
  IsAssumedPod(pod *v1.Pod) (bool, error)
  AddNode(node *v1.Node) *framework.NodeInfo
  UpdateNode(oldNode, newNode *v1.Node) *framework.NodeInfo
  RemoveNode(node *v1.Node) error
  UpdateSnapshot(nodeSnapshot *Snapshot) error
  Dump() *Dump
}
type cacheImpl struct {
  stop   <-chan struct{}
  ttl    time.Duration
  period time.Duration
  mu sync.RWMutex
  assumedPods sets.String
  podStates map[string]*podState
  nodes     map[string]*nodeInfoListItem
  headNode *nodeInfoListItem
  nodeTree *nodeTree
  imageStates map[string]*imageState
}

cacheImpl 中的 nodes 存放集群内所有 Node 信息;podStates 存放所有 Pod 信息;,assumedPods 存放已经调度成功但是还没调用 kube-apiserver 的进行绑定的(也就是还没有执行 bind 插件)的Pod,需要这个缓存的原因也是为了提升调度效率,将绑定和调度分开,因为绑定需要调用 kube-apiserver,这是一个重操作会消耗比较多的时间,所以 Scheduler 乐观的假设调度已经成功,然后返回去调度其他 Pod,而这个 Pod 就会放入 assumedPods 中,并且也会放入到 podStates 中,后续其他 Pod 在进行调度的时候,这个 Pod 也会在插件的计算范围内(如亲和性), 然后会新起协程进行最后的绑定,要是最后绑定失败了,那么这个 Pod 的信息会从 assumedPods 和 podStates 移除,并且把这个 Pod 重新放入 activeQ 中,重新被调度。

Scheduler 在启动时首先会 list 一份全量的 Pod 和 Node 数据到上述的缓存中,后续通过 watch 的方式发现变化的 Node 和 Pod,然后将变化的 Node 或 Pod 更新到上述缓存中。

Scheduler 之 NextPod 和 SchedulePod

到了这里,调度框架 framework 和调度队列 SchedulingQueue 都已经创建出来了,现在是时候开始调度Pod了。

Scheduler 中有个成员 NextPod 会从 activeQ 队列中尝试获取一个待调度的 Pod,该函数在 SchedulePod 中被调用,如下:

// 启动 Scheduler
func (sched *Scheduler) Run(ctx context.Context) {
    sched.SchedulingQueue.Run()
    go wait.UntilWithContext(ctx, sched.scheduleOne, 0)
    <-ctx.Done()
    sched.SchedulingQueue.Close()
}


// 尝试调度一个 Pod,所以 Pod 的调度入口
func (sched *Scheduler) scheduleOne(ctx context.Context) {
    // 会一直阻塞,直到获取到一个Pod
    ......
    podInfo := sched.NextPod()
    ......
}

NextPod 它被赋予如下函数:

// pkg/scheduler/internal/queue/scheduling_queue.go

func MakeNextPodFunc(queue SchedulingQueue) func() *framework.QueuedPodInfo {
    return func() *framework.QueuedPodInfo {
        podInfo, err := queue.Pop()
        if err == nil {
            klog.V(4).InfoS("About to try and schedule pod", "pod", klog.KObj(podInfo.Pod))
            for plugin := range podInfo.UnschedulablePlugins {
                metrics.UnschedulableReason(plugin, podInfo.Pod.Spec.SchedulerName).Dec()
            }
            return podInfo
        }
        klog.ErrorS(err, "Error while retrieving next pod from scheduling queue")
        return nil
    }
}

Pop 会一直阻塞,直到 activeQ 长度大于0,然后去取出一个 Pod 返回

// pkg/scheduler/internal/queue/scheduling_queue.go

func (p *PriorityQueue) Pop() (*framework.QueuedPodInfo, error) {
    p.lock.Lock()
    defer p.lock.Unlock()
    for p.activeQ.Len() == 0 {
        // When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
        // When Close() is called, the p.closed is set and the condition is broadcast,
        // which causes this loop to continue and return from the Pop().
        if p.closed {
            return nil, fmt.Errorf(queueClosed)
        }
        p.cond.Wait()
    }
    obj, err := p.activeQ.Pop()
    if err != nil {
        return nil, err
    }
    pInfo := obj.(*framework.QueuedPodInfo)
    pInfo.Attempts++
    p.schedulingCycle++
    return pInfo, nil
}

到了这里我们就介绍完了 Scheduler 中最重要的几个成员,简单总结下:

  • Profiles: 存放插件对象,在运行时可以遍历扩展点内的所有插件运行
  • SchedulerQueue:用来存放待调度 Pod,异常 Pod,调度失败 Pod,他们相互可以转换
  • cache:存放 Pod 和 Node 的信息,提升调度效率
  • NextPod 和 ScheduleOne:尝试从 activeQ 获取一个 Pod,开始调度。

本文就到这,下一篇,我们会讲一讲一个 Pod 提交后的调度流程。


我是清风徐来,一起学习k8s,领取k8s、docker等精华学习资源

kube-scheduler深度剖析与开发(二)_第7张图片

本文由博客一文多发平台 OpenWrite 发布!

你可能感兴趣的:(kube-scheduler深度剖析与开发(二))