- openwrt路由器禁止某台设备上网操作失败问题解决
无级程序员
智能路由openwrtrax3000m智能路由
家有一台移动RAX3000M,改造成了多功能服务器,同时,还能限制小孩上网,但时间长了就发现移除可添加限制上网设备时无法操作。到处搜索也没找到它是怎么限制的,于是用mac地址在/etc目录下搜索,搜索命令:grep-r"62:19"/etc上面的“62:19”是被限制了上网的一个设备mac地址中的一部分。终于发现了是配置在/etc/config/security里面,内容如下:configfire
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- 基于流程的记事梳理rm -i学习步骤
鸭梨山大哎
linux学习
内在化理解rm-i回忆一下你整理书架的经历。书架上摆满了各种书籍(文件),你想要扔掉一些不再需要的书。普通的清理方式就像直接使用rm命令,可能会不小心把一些本不想扔掉的书也一起扔掉了。而当你使用类似rm-i的方式时,每拿起一本书准备扔掉,你都会先问自己:“我真的不再需要这本书了吗?”只有在你确认后,才会把书扔掉。这种方式让你在整理书架时更加谨慎,减少误扔重要书籍的可能性,和在电脑上使用rm-i谨慎
- 【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)
pen-ai
NLP机器学习自然语言处理word人工智能
WordAnalogyTask(词类比任务)定义:WordAnalogyTask是用于评估词向量质量的内在指标(IntrinsicMetric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。示例:在一个理想的词向量空间中,单词之间的关系应该满足如下等式:king−man+woman≈queenking−man+woman≈queenk
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- python 获取鼠标在屏幕上的具体位置以及动作,判断鼠标是否在浏览器内
计算机辅助工程
python计算机外设开发语言
python获取鼠标在屏幕上的具体位置以及动作,判断鼠标是否在浏览器内在Python中,要获取鼠标在屏幕上的具体位置以及动作,并判断鼠标是否在浏览器内,我们可以使用pyautogui库。pyautogui是一个非常强大的库,可以用来模拟鼠标操作、屏幕截图、获取屏幕尺寸和分辨率等。安装pyautogui首先,确保你已经安装了pyautogui。如果还没有安装,可以通过pip安装:pipinstall
- 芒格的双轨分析:结合定性和定量的投资方法
SuperAGI2025
DeepSeekai
芒格的"双轨分析":结合定性和定量的投资方法关键词:芒格、双轨分析、定性分析、定量分析、投资方法、系统分析摘要:芒格的“双轨分析”是一种结合定性和定量分析的投资方法,旨在通过综合分析企业的内在价值和市场趋势,帮助投资者做出更科学的投资决策。本文将详细介绍双轨分析的背景、核心概念、算法原理、系统架构及实际应用,帮助读者全面理解并掌握这一方法。第一部分:芒格的双轨分析基础第1章:投资分析的演变与双轨分
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- 数学建模与图形建模资源全解析
点我头像干啥
Ai数学建模人工智能python深度学习数据挖掘分类
引言在当今的数据驱动时代,数学建模与图形建模已成为解决复杂问题、揭示数据内在规律的重要工具。无论是科学研究、工程设计,还是商业分析、决策支持,建模技术都发挥着举足轻重的作用。本文旨在为数学建模与图形建模的初学者及进阶者提供一份详尽的资源指南,涵盖软件工具、学习资料、在线课程、社区论坛等多个方面,帮助大家更好地掌握这些技能。一、数学建模资源概览1.数学建模软件工具数学建模离不开强大的软件支持。以下是
- leetcode 贪心算法
gufly-
leetcode贪心算法算法
刷题记录以局部最优推出整体最优,且想不到反例,则可以尝试贪心算法455.分发饼干从后向前遍历孩子数组,用大饼干满足胃口大,并统计满足小孩数量classSolution(object):deffindContentChildren(self,g,s):g.sort()s.sort()res=0ind=len(s)-1foriinrange(len(g)-1,-1,-1):ifind>=0ands[i
- “面面俱到”!人脸活体检测让应用告别假面攻击
harmonyos
随着人脸识别技术在金融、医疗等多个领域的加速落地,网络安全、信息泄露等问题愈为突出,用户对应用稳定性和安全性的要求也更为严格。HarmonyOSSDK场景化视觉服务(VisionKit)提供人脸动作活体检测能力,增强对于非活体攻击的防御能力和活体通过率。在投资理财、在线支付等高风险金融服务场景中,通过检测用户的组合动作等来验证用户为真实活体操作,抵御攻击,提高安全性,降低业务风险,全方位保障用户体
- CM311-1a刷armbian全纪录
godfrey1108
androidadb
小孩上小学了,难免要打印东西,但是新的打印机又太贵,淘了个400块的兄弟打印机,只有USB连接那种老式的,想到S905lsade芯片又很多种玩法,可以刷armbian,自己心热也买了一个来玩,结果没想到买了就入坑,网上各种资料搜不到,经常只是下班来搞一下,断断续续搞了一个月才搞定,大佬勿喷啊,纯属自己玩儿,自己摸索,而且也是偶尔搞一下,所以很慢。1、下载ophub大佬的armbian系统,一定要下
- 研究发现,LLM基于数据的内在含义进行表示,并以其主导语言推理
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习copilot
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/【本周AI新闻:Deepseek崛起背后:AI智能代理时代正式到来?】https://w
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- 美股数据:历史高频分钟回测的获取与深度分析20250305
level2Tick
美股分钟高频历史行情金融大数据数据库
美股数据:历史高频分钟回测的获取与深度分析20250305在金融分析和投资决策的复杂领域中,美股历史分钟高频数据发挥着不可替代的作用。这些数据以其详尽性,记录了股票每分钟的价格和成交量等关键信息,使投资者能够深入挖掘市场动态和价格波动的内在规律。通过对这些高频数据的深入分析,投资者不仅能够更准确地判断市场走势,还能及时发现并利用潜在的交易机会,从而制定出更具针对性和实效性的交易策略。此外,分钟数据
- 两个栈模拟实现队列
苦逼工科男
C/C++算法模拟队列栈模拟队列
用两个栈模拟实现一个队列,如果栈的容量分别是O和P(O>P),那么模拟实现的队列最大容量是()?A:2O+1B:O+PC:2O-1D:2P+1正确答案:D两个栈模拟实现队列_Hey小孩的博客-CSDN博客_两个栈模拟队列记stack1的容量是O,stack2的容量是P,(O>P),将stack1作为存储空间,stack2作为输出的缓冲空间。入队:1、将P个元素push到stack1中;2、再将该P
- 人生必读书籍《高效能人士的七个习惯》
Hello kele
经验分享
最近研读了史蒂芬・柯维的《高效能人士的七个习惯》,这本书犹如一盏明灯,照亮了我在个人成长与自我管理道路上前行的方向,让我收获颇丰。这七个习惯层层递进,构建起了高效能人士的底层逻辑,以下是对每个习惯的含义介绍及案例分析。积极主动:意味着个人要为自己的选择和行为负责,从内在驱动自己去应对生活和工作,而不是被外界因素所左右。它不仅是一种态度,更是一种基于个人价值观和原则的行动选择。例如埃隆・马斯克,他不
- Python循环else逆天操作!90%程序员竟不知?
筱涵哥
Python基础入门python
你是不是经常遇到这样的场景?问题1:在循环里查找元素,没找到时想提示“未找到”,但代码写得像“俄罗斯套娃”。问题2:处理完一堆任务后,想执行“收尾操作”,却不得不加一个全局变量当“信号灯”。问题3:文件检查、数据分析时,想优雅地输出“一切正常”,结果代码比问题还复杂。传统写法要么冗长,要么逻辑混乱,像个“迷路的小孩”一、作死现场:else引发的数据灵异事件1.用户失踪谜案#想找VIP用户,找不到就
- LangChain —— 多模态大模型的 prompt template
Miyazaki_Hayao
LangChainlangchainprompt
文章目录一、如何直接将多模态数据传输给模型二、如何使用mutimodalprompts一、如何直接将多模态数据传输给模型 在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain在类中提供了内在逻辑来转化为期待的格式。 传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。importbase64importhttpximage
- 梯度下降法(Gradient Descent) -- 现代机器学习的血液
AOIWB
机器学习人工智能python
梯度下降法(GradientDescent)–现代机器学习的血液梯度下降法是现代机器学习最核心的优化引擎。本文从数学原理、算法变种、应用场景到实践技巧,用三维可视化案例和代码实现揭示其内在逻辑,为你构建完整的认知体系。优化算法一、梯度下降法的定义与核心原理定义:梯度下降法是一种通过迭代更新参数来最小化目标函数的优化算法,其核心思想是沿着当前点的负梯度方向逐步逼近函数最小值。数学表达:参数更新公式为
- 指纹识别系统架构
mickey0380
生物识别系统架构人工智能指纹识别模式识别
目录1.系统架构1.1指纹采集模块1.2指纹处理模块1.3指纹登记模块1.4指纹识别模块1.5指纹识别决策模块1.6管理模块1.6.1存储管理1.6.2传输管理1.6.3安全管理1.7应用开放功能1.7.1指纹登记功能1.7.2指纹验证功能1.7.3指纹辨识功能2.工作流程2.1指纹登记2.2指纹验证2.3指纹辨识3.系统安全3.1系统内在限制3.2系统外部攻击1.系统架构《GB∕T37076-2
- 读心术思维导图
胡西风_foxww
#思维导图读心术思维导图模板markdown
读心术思维导图把自己变成他人贴近对方的肢体行为模仿姿势延迟动作不要过于精确模仿对方的声音模仿面部表情同样的速度和节奏配合对方的精神状态注意对方的精力值,让精力充沛起来的练习言行一致,情绪状态看懂他人,语言、思维方式视觉记忆视觉记忆听觉记忆动觉记忆EAC模型视觉创建视觉回忆听觉创建听觉回忆动觉记忆自言自语(内在的推理者)听觉记忆为主导的人语习惯与思维方式语速快慢节奏行话惯语口头禅听觉词汇(听、叫、问
- GPS用CN0而不是SNR来表示接收机解调出的卫星信号的强弱
超能力MAX
fpga开发
CN0定义为载波噪声功率谱密度比,载波功率是指2.046MHz带宽内的总功率,而噪声功率谱密度比(不考虑系统引入噪声)为每Hz的热噪声,常温为常数-174dBm/Hz。CN0+10log(带宽)=SNR,这是两者之间的内在联系。从上述公式可以看出,CN0跟带宽没关系,而SNR跟带宽有关系。由于CN0跟带宽没关系,因此利用CN0可以直接比较不同带宽的系统的性能。例如,对于GPSC码,扩频码速率是1.
- 格雷厄姆的价格与价值区分:市场先生的教训
AGI大模型与大数据研究院
DeepSeek大数据人工智能物联网ai
格雷厄姆的价格与价值区分:市场先生的教训关键词:格雷厄姆,价格与价值,市场先生,价值投资,内在价值,安全边际,投资策略摘要:本文深入探讨了格雷厄姆的价值投资理论,重点分析了价格与价值的区分方法,结合市场先生的比喻,揭示了市场波动与投资者心理的关系。通过数学模型、算法原理和系统设计,本文详细讲解了如何在实际投资中应用格雷厄姆的理论,并提供了实战案例和最佳实践建议。第一部分:引言第1章:引言1.1本书
- GIS地图、轨道交通与智能驾驶UI设计:未来交通的智能化探索
UI设计兰亭妙微
ui界面设计
随着科技的飞速发展,我们正迎来一个高度智能化的未来。在这个时代背景下,GIS(地理信息系统)、轨道交通以及智能驾驶UI设计正逐步成为推动交通行业变革的重要力量。本文将深入探讨这三者之间的内在联系及其在未来交通系统中的应用前景。GIS地图:交通信息的智能化集成GIS地图是一种集成了空间数据管理和分析功能的技术系统,它能够实现对地理分布数据的采集、储存、管理、运算、分析、显示和描述。在轨道交通领域,G
- 当你给大模型一段输入之后,它是怎么得到答案的
牛不才
000-大模型chatgptAIGC文心一言gptllamaagiprompt
1.先把问题“嚼碎”(输入处理)比如你问:“太阳为什么东升西落?”切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。2.动用毕生所学(模型“回想”知识)大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。猜测套路:统计
- 【项目日记】仿RabbitMQ实现消息队列 --- 模块设计
叫我龙翔
我的项目rabbitmq分布式c++运维网络http服务器
你要的答案不在书本里,也不能靠别人来解决,除非你想一辈子当小孩。你必须在自我内部找到答案,感受到该做的正确事情。---《献给阿尔吉侬的花束》---仿RabbitMQ实现消息队列1数据管理模块1.1交换机数据管理模块1.2队列数据管理模块1.3绑定数据管理模块1.4消息数据管理模块1.5虚拟机数据管理模块2功能模块2.1路由匹配模块2.2消费者管理模块2.3信道管理模块2.4连接管理模块3服务器模块
- [译] .NET 8 中的硬件内在函数(支持 Wasm 和 AVX-512)
zyl910
SIMDc#.netSIMDwasm
原文链接:https://devblogs.microsoft.com/dotnet/dotnet-8-hardware-intrinsics/HardwareIntrinsicsin.NET8TannerGooding[MSFT]December11th,2023译文:.NET8中的硬件内在函数坦纳·古丁[MSFT]2023年12月11日.NET在通过JIT编译器本质上理解的API提供对附加硬件
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag