由于最近一直没有时间,所以这篇博客一直没发,下面我说说uv画圆弧,圆面,不规则面拼接。
先来两张效果图
图截的不咋滴,凑合着看吧,画圆弧主要用的贝塞尔曲线画的,我感觉这个比较简单,当然大家也可以使用圆的方程,抛物线的方程都可以实现这种效果
但是我比较倾向于用贝塞尔,如果大家会ps的话,知道里边有一个钢笔工具,他就是贝塞尔的原理,贝塞尔的算法大家可以去网上搜搜,
贝塞尔计算方法类网上也有很多
下面先上我的代码
using UnityEngine; [System.Serializable] public class Bezier : System.Object { public Vector3 p0; public Vector3 p1; public Vector3 p2; public Vector3 p3; public float ti = 0f; private Vector3 b0 = Vector3.zero; private Vector3 b1 = Vector3.zero; private Vector3 b2 = Vector3.zero; private Vector3 b3 = Vector3.zero; private float Ax; private float Ay; private float Az; private float Bx; private float By; private float Bz; private float Cx; private float Cy; private float Cz; public Bezier( Vector3 v0, Vector3 v1, Vector3 v2, Vector3 v3 ) { this.p0 = v0; this.p1 = v1; this.p2 = v2; this.p3 = v3; } // 0.0 >= t <= 1.0 public Vector3 GetPointAtTime( float t ) { this.CheckConstant(); float t2 = t * t; float t3 = t * t * t; float x = this.Ax * t3 + this.Bx * t2 + this.Cx * t + p0.x; float y = this.Ay * t3 + this.By * t2 + this.Cy * t + p0.y; float z = this.Az * t3 + this.Bz * t2 + this.Cz * t + p0.z; return new Vector3( x, y, z ); } private void SetConstant() { this.Cx = 3f * ( ( this.p0.x + this.p1.x ) - this.p0.x ); this.Bx = 3f * ( ( this.p3.x + this.p2.x ) - ( this.p0.x + this.p1.x ) ) - this.Cx; this.Ax = this.p3.x - this.p0.x - this.Cx - this.Bx; this.Cy = 3f * ( ( this.p0.y + this.p1.y ) - this.p0.y ); this.By = 3f * ( ( this.p3.y + this.p2.y ) - ( this.p0.y + this.p1.y ) ) - this.Cy; this.Ay = this.p3.y - this.p0.y - this.Cy - this.By; this.Cz = 3f * ( ( this.p0.z + this.p1.z ) - this.p0.z ); this.Bz = 3f * ( ( this.p3.z + this.p2.z ) - ( this.p0.z + this.p1.z ) ) - this.Cz; this.Az = this.p3.z - this.p0.z - this.Cz - this.Bz; } // Check if p0, p1, p2 or p3 have changed private void CheckConstant() { if( this.p0 != this.b0 || this.p1 != this.b1 || this.p2 != this.b2 || this.p3 != this.b3 ) { this.SetConstant(); this.b0 = this.p0; this.b1 = this.p1; this.b2 = this.p2; this.b3 = this.p3; } } }
这就是贝塞尔计算类,很简单的计算方法,
using UnityEngine; using System.Collections; using System.Collections.Generic; public class TriangleSubdivision :MonoBehaviour{ public static int[] TriangulatePolygon (Vector2[] XZofVertices) { // int VertexCount = XZofVertices.Length; //minx miny maxx maxy float xmin = XZofVertices[0].x; float ymin = XZofVertices[0].y; float xmax = xmin; float ymax = ymin; for (int ii1 = 1; ii1 < VertexCount; ii1++) { if (XZofVertices[ii1].x < xmin) { xmin = XZofVertices[ii1].x; } else if (XZofVertices[ii1].x > xmax) { xmax = XZofVertices[ii1].x; } if (XZofVertices[ii1].y < ymin) { ymin = XZofVertices[ii1].y; } else if (XZofVertices[ii1].y > ymax) { ymax = XZofVertices[ii1].y; } } float dx = xmax - xmin; float dy = ymax - ymin; float dmax = (dx > dy) ? dx : dy; float xmid = (xmax + xmin) * 0.5f; float ymid = (ymax + ymin) * 0.5f; Vector2[] ExpandedXZ = new Vector2[3 + VertexCount]; for (int ii1 = 0; ii1 < VertexCount; ii1++) { ExpandedXZ[ii1] = XZofVertices[ii1]; } ExpandedXZ[VertexCount] = new Vector2((xmid - 2 * dmax), (ymid - dmax)); ExpandedXZ[VertexCount + 1] = new Vector2(xmid, (ymid + 2 * dmax)); ExpandedXZ[VertexCount + 2] = new Vector2((xmid + 2 * dmax), (ymid - dmax)); List<Triangle> TriangleList = new List<Triangle>(); TriangleList.Add(new Triangle(VertexCount, VertexCount+1, VertexCount+2)); for (int ii1 = 0; ii1 < VertexCount; ii1++) { //检查构成的三角形 List<Edge> Edges = new List<Edge>(); for (int ii2 = 0; ii2 < TriangleList.Count; ii2++) { if (TriangulatePolygonSubFunc_InCircle(ExpandedXZ[ii1], ExpandedXZ[TriangleList[ii2].p1],ExpandedXZ[TriangleList[ii2].p2],ExpandedXZ[TriangleList[ii2].p3])) { Edges.Add(new Edge(TriangleList[ii2].p1, TriangleList[ii2].p2)); Edges.Add(new Edge(TriangleList[ii2].p2, TriangleList[ii2].p3)); Edges.Add(new Edge(TriangleList[ii2].p3, TriangleList[ii2].p1)); TriangleList.RemoveAt(ii2); ii2--; } } if (ii1 >= VertexCount) { continue; } //判断相同的三个点构成的三角形 for (int ii2 = Edges.Count - 2; ii2 >= 0; ii2--) { for (int ii3 = Edges.Count - 1; ii3 >= ii2 + 1; ii3--) { if (Edges[ii2].Equals(Edges[ii3])) { Edges.RemoveAt(ii3); Edges.RemoveAt(ii2); ii3--; continue; } } } for (int ii2 = 0; ii2 < Edges.Count; ii2++) { TriangleList.Add(new Triangle(Edges[ii2].p1, Edges[ii2].p2, ii1)); } Edges.Clear(); Edges = null; } //大于点集外围的点 for (int ii1 = TriangleList.Count - 1; ii1 >= 0; ii1--) { if (TriangleList[ii1].p1 >= VertexCount ||TriangleList[ii1].p2 >= VertexCount ||TriangleList[ii1].p3 >= VertexCount) { TriangleList.RemoveAt(ii1); } } //不在房间内的面 for(int ii3 = 0;ii3<TriangleList.Count;ii3++){ if(TriangleInPolygonOuter(XZofVertices,XZofVertices[TriangleList[ii3].p1],XZofVertices[TriangleList[ii3].p2],XZofVertices[TriangleList[ii3].p3])){ TriangleList.RemoveAt(ii3); ii3--; } } TriangleList.TrimExcess(); int[] Triangles = new int[3 * TriangleList.Count]; for (int ii1 = 0; ii1 < TriangleList.Count; ii1++) { Triangles[3 * ii1] = TriangleList[ii1].p1; Triangles[3 * ii1 + 1] = TriangleList[ii1].p2; Triangles[3 * ii1 + 2] = TriangleList[ii1].p3; } return Triangles; } static bool TriangulatePolygonSubFunc_InCircle(Vector2 p, Vector2 p1, Vector2 p2, Vector2 p3) { if (Mathf.Abs(p1.y - p2.y) < 0.0000001&&Mathf.Abs(p2.y - p3.y) < 0.0000001) { return false; } float m1, m2, mx1, mx2, my1, my2, xc, yc; if (Mathf.Abs(p2.y - p1.y) < 0.0000001) { m2 = -(p3.x - p2.x) / (p3.y - p2.y); mx2 = (p2.x + p3.x) * 0.5f; my2 = (p2.y + p3.y) * 0.5f; xc = (p2.x + p1.x) * 0.5f; yc = m2 * (xc - mx2) + my2; } else if (Mathf.Abs(p3.y - p2.y) < 0.0000001) { m1 = -(p2.x - p1.x) / (p2.y - p1.y); mx1 = (p1.x + p2.x) * 0.5f; my1 = (p1.y + p2.y) * 0.5f; xc = (p3.x + p2.x) * 0.5f; yc = m1 * (xc - mx1) + my1; } else { m1 = -(p2.x - p1.x) / (p2.y - p1.y); m2 = -(p3.x - p2.x) / (p3.y - p2.y); mx1 = (p1.x + p2.x) * 0.5f; mx2 = (p2.x + p3.x) * 0.5f; my1 = (p1.y + p2.y) * 0.5f; my2 = (p2.y + p3.y) * 0.5f; xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2); yc = m1 * (xc - mx1) + my1; } float dx = p2.x - xc; float dy = p2.y - yc; float rsqr = dx * dx + dy * dy; dx = p.x - xc; dy = p.y - yc; double drsqr = dx * dx + dy * dy; return (drsqr <= rsqr); } static bool TriangleInPolygonOuter(Vector2[] pList,Vector2 p1,Vector2 p2,Vector2 p3){ Vector2[] centerPoint = new Vector2[3]; centerPoint[0] = new Vector2((p1.x+p2.x)/2,(p1.y+p2.y)/2); centerPoint[1] = new Vector2((p1.x+p3.x)/2,(p1.y+p3.y)/2); centerPoint[2] = new Vector2((p3.x+p2.x)/2,(p3.y+p2.y)/2); for(int j = 0,crossNum = 0;j<centerPoint.Length;j++){ for (int i = 0; i < pList.Length; i++) { if (IsPointInLine(centerPoint[j].x, centerPoint[j].y, pList[i].x, pList[i].y, pList[(i+1)%pList.Length].x, pList[(i+1)%pList.Length].y)==0) { crossNum=crossNum+1; continue; }else if(IsPointInLine(centerPoint[j].x, centerPoint[j].y, pList[i].x, pList[i].y, pList[(i+1)%pList.Length].x, pList[(i+1)%pList.Length].y)==2){ crossNum = 1; break; } } if ((crossNum % 2) == 0) { return true; } crossNum = 0; } return false; } //0 在外 1 在内 2 边上 static int IsPointInLine(float x,float y,float x1,float y1,float x2,float y2) { float maxY =y1; float minY = y2; if(y1>y2){ maxY = y1; minY = y2; }else{ maxY = y2; minY = y1; } float averageX = (x1+x2)/2; float averageY = (y1+y2)/2; if(y==averageY&&x==averageX){ return 2; } if (y < maxY && y >minY) { if (x >(x1 + (x2 - x1) * (y - y1) / (y2 - y1))) { return 0; } } return 1; } } struct Triangle { public int p1; public int p2; public int p3; public Triangle(int point1, int point2, int point3) { p1 = point1; p2 = point2; p3 = point3; } } class Edge { public int p1; public int p2; public Edge(int point1, int point2) { p1 = point1; p2 = point2; } public Edge() : this(0, 0) {} public bool Equals(Edge other) { return ((this.p1 == other.p2) && (this.p2 == other.p1)) ||((this.p1 == other.p1) && (this.p2 == other.p2)); } }
这个类上一张已经说过了,就是画不规则图形的类,不过我这篇文章是把圆和不规则拼接出带有圆弧状的图形,看图大家就会明白了
using UnityEngine; using System.Collections; public class ChartletManager : System.Object { Bezier myBezier; public ChartletManager(){ } public GameObject WallChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,float height,Texture2D tex,float excursion,float zoom) { myBezier = new Bezier( startPoint, new Vector3( excursion, zoom, 0f ), new Vector3( excursion, zoom, 0f ), endPoint); MeshFilter myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter)); Mesh myMesh = myFilter.mesh; Vector3[] myVertices = new Vector3[52]; for(int i = 0;i<52;i++){ if(i<26){ myVertices[i] = myBezier.GetPointAtTime( (float)((i) *0.04) ); myVertices[i] = new Vector3(myVertices[i].x,myVertices[i].y,myVertices[i].z-height); }else{ myVertices[i] = myBezier.GetPointAtTime( (float)((i-26) *0.04) ); myVertices[i] = new Vector3(myVertices[i].x,myVertices[i].y,myVertices[i].z); } } myMesh.vertices = myVertices; int[] myTriangles = new int[52 * 3]; for(int i = 0; i < 52; i++){ if(i<25){ myTriangles[i*3] = 26+i; myTriangles[i*3+1] = i; myTriangles[i*3+2] = i+1; }else if(i == 25||i==51){ myTriangles[i*3] = 0; myTriangles[i*3+1] = 0; myTriangles[i*3+2] = 0; }else{ myTriangles[i*3+2] = i; myTriangles[i*3+1] = i+1; myTriangles[i*3] = i-25; } } Vector2[] myuvs = new Vector2[52]; for (int i = 0; i < 52; i++) { myuvs [i] = new Vector2 ( (myVertices [i].x), (myVertices [i].y)); } myMesh.triangles = myTriangles; myMesh.uv = myuvs; myMesh.RecalculateBounds (); myMesh.RecalculateNormals (); obj.renderer.material.mainTexture = tex; return obj; } public GameObject CircleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Texture2D tex,float excursion,float zoom) { myBezier = new Bezier( startPoint, new Vector3( excursion, zoom, 0f ), new Vector3( excursion, zoom, 0f ), endPoint); MeshFilter myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter)); Mesh myMesh = myFilter.mesh; Vector3[] myVertices = new Vector3[27]; myVertices[0] = new Vector3(0,0,0); for(int i =0; i <= 25; i++) { myVertices[i+1] = myBezier.GetPointAtTime( (float)(i *0.04) ); } myMesh.vertices = myVertices; Vector2[] myuvs = new Vector2[27]; for (int i = 0; i < 27; i++) { myuvs [i] = new Vector2 ( (myVertices [i].x), (myVertices [i].y)); } myMesh.triangles = TriangleSubdivision.TriangulatePolygon(myuvs); myMesh.uv = myuvs; myMesh.RecalculateBounds (); myMesh.RecalculateNormals (); obj.renderer.material.mainTexture = tex; return obj; } public GameObject CircleAndTriangleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Vector3[] points,Texture2D tex,float excursion,float zoom) { myBezier = new Bezier( startPoint, new Vector3( excursion, zoom, 0f ), new Vector3( excursion, zoom, 0f ), endPoint); MeshFilter myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter)); Mesh myMesh = myFilter.mesh; Vector3[] myVertices = new Vector3[27+points.Length]; myVertices[0] = new Vector3((startPoint.x+endPoint.x)/2,(startPoint.y+endPoint.y)/2,(startPoint.z+endPoint.z)/2); for(int i =0; i <= 25; i++) { myVertices[i+1] = myBezier.GetPointAtTime( (float)(i *0.04) ); } for(int i = 27;i<27+points.Length;i++){ myVertices[i] = points[i-27]; } myMesh.vertices = myVertices; Vector2[] myuvs = new Vector2[27+points.Length]; for (int i = 0; i < myuvs.Length; i++) { myuvs [i] = new Vector2 ( (myVertices [i].x), (myVertices [i].y)); } myMesh.triangles = TriangleSubdivision.TriangulatePolygon(myuvs); myMesh.uv = myuvs; myMesh.RecalculateBounds (); myMesh.RecalculateNormals (); obj.renderer.material.mainTexture = tex; return obj; } }
为了方便大家测试,我把我的测试放在了一个类里,大家直接调这个方法即可,我是测试用的,大家可以修改成自己的脚本
using UnityEngine; public class MyBezier : MonoBehaviour { public Bezier myBezier; public GameObject circleline; public Texture2D tex; void Start() { GameObject floorTexture = (GameObject)Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0))); GameObject wallTexture =(GameObject) Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0))); ChartletManager chartlet = new ChartletManager(); Vector3[] ceilVertices = new Vector3[4]; ceilVertices[0] = new Vector3(-4,0,0); ceilVertices[1] = new Vector3(-4,-5,0); ceilVertices[2] = new Vector3(4,-5,0); ceilVertices[3] = new Vector3(4,0,0); // ceilVertices[1] = new Vector3(-5,1,0); // ceilVertices[2] = new Vector3(-5,-4,0); // ceilVertices[3] = new Vector3(-2,-4.5f,0); // ceilVertices[4] = new Vector3(-2.5f,-2,0); // ceilVertices[5] = new Vector3(2,-2.5f,0); // ceilVertices[6] = new Vector3(2.5f,-4,0); // ceilVertices[7] = new Vector3(5,-4,0); // ceilVertices[8] = new Vector3(5,0,0); // ceilVertices[9] = new Vector3(4,0,0); wallTexture= chartlet.WallChartletInMesh(wallTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),3.0f,tex,0,6); floorTexture= chartlet.CircleAndTriangleChartletInMesh(floorTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),ceilVertices,tex,0,6); } }
测试用例,大家可以做自己想要的东西了,CircleAndTriangleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Vector3[] points
,Texture2D tex,float excursion,float zoom)
我解释一下这个类的传递参数吧
obj,就是传进来的obj对象,大家可以使用out,那个直接能用了
startPoint圆弧起始点
endPoint终点圆弧点
points 是传入的不规则图形的各个点
tex 是那张贴图
excursion这个是圆弧的 倾斜度
zoom是圆弧的大小就是圆弧顶点到起始点于终止点中间的那个点的距离 正规半圆这个值应该是圆半径的1.5倍
using UnityEngine; public class MyBezier : MonoBehaviour { public Bezier myBezier; public GameObject circleline; public Texture2D tex; void Start() { GameObject floorTexture = (GameObject)Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0))); GameObject wallTexture =(GameObject) Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0))); ChartletManager chartlet = new ChartletManager(); Vector3[] ceilVertices = new Vector3[10]; ceilVertices[0] = new Vector3(-4,0,0); // ceilVertices[1] = new Vector3(-4,-5,0); // ceilVertices[2] = new Vector3(4,-5,0); // ceilVertices[3] = new Vector3(4,0,0); ceilVertices[1] = new Vector3(-5,1,0); ceilVertices[2] = new Vector3(-5,-4,0); ceilVertices[3] = new Vector3(-2,-4.5f,0); ceilVertices[4] = new Vector3(-2.5f,-2,0); ceilVertices[5] = new Vector3(2,-2.5f,0); ceilVertices[6] = new Vector3(2.5f,-4,0); ceilVertices[7] = new Vector3(5,-4,0); ceilVertices[8] = new Vector3(5,0,0); ceilVertices[9] = new Vector3(4,0,0); wallTexture= chartlet.WallChartletInMesh(wallTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),3.0f,tex,3,8); floorTexture= chartlet.CircleAndTriangleChartletInMesh(floorTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),ceilVertices,tex,3,8); } }
如果我数值改改就会出现这种,zoom就是倾斜程度,当然也可以是负数,是往里凹进去的,excursion是负数就向另一个方向倾斜。
凹进去的就是这种情况,具体情况大家可以测试,值的范围有限制的,超出了,会出现空的情况,当然我写的也有很多不足之处,大家可以修改修改
不知为何 csdn编辑问题,我的图片文字与代码都混合了 所以乱了 我把我的工程打包上去 大家可以下载看看具体实现效果
下载地址
http://download.csdn.net/detail/pzw0416/6727303