复习整理1

 1.groupByKey:

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    #groupByKey算子:
    rdd = sc.parallelize(
        [('a', 1), ('a', 12), ('a', 3), ('b', 1), ('c', 1)], 2)
    print(rdd.glom().collect())
    # 通过groupBy对数据进行分组
    # groupBy传入的函数的 意思是: 通过这个函数, 确定按照谁来分组(返回谁即可)
    # 分组规则 和SQL是一致的, 也就是相同的在一个组(Hash分组)
    rdd3=rdd.groupByKey()
    print(rdd3.glom().collect())
    rdd4=rdd3.map(lambda x:(x[0],list(x[1])))
    print(rdd4.glom().collect())

运行结果:

复习整理1_第1张图片

 2.集合运算(交、并)

2.1 join

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd1 = sc.parallelize([(1, "a1"), (1, "a2"), (2, "b"), (3, "c")])
    rdd2 = sc.parallelize([(3, "cc"), (3, "ccc"), (4, "d"), (5, "e")])
    rdd3 = rdd1.join(rdd2)
    print(rdd3.collect())

 运行结果:

复习整理1_第2张图片

 2.2 leftOuterJoin

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd1 = sc.parallelize([(1, "a1"), (1, "a2"), (2, "b"), (3, "c")])
    rdd2 = sc.parallelize([(3, "cc"), (3, "ccc"), (4, "d"), (5, "e")])
    #rdd3 = rdd1.join(rdd2)
    rdd3 = rdd1.leftOuterJoin(rdd2)
    print(rdd3.collect())

运行结果:

2.3 rightOuterJoin


from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd1 = sc.parallelize([(1, "a1"), (1, "a2"), (2, "b"), (3, "c")])
    rdd2 = sc.parallelize([(3, "cc"), (3, "ccc"), (4, "d"), (5, "e")])
    rdd3 = rdd1.rightOuterJoin(rdd2)
    print(rdd3.collect())

 运行结果:

2.4 intersection

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd1 = sc.parallelize([1, 2, 3, 4])
    rdd2 = sc.parallelize([11, 12, 3, 4])
    rdd3 = rdd1.intersection(rdd2)
    print(rdd3.collect())

 运行结果:

复习整理1_第3张图片

3.4groupBy(未找到)

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd = sc.parallelize(
        [('a', 1), ('a', 12), ('a', 3), ('b', 1), ('c', 1)], 2)
    # 通过groupBy对数据进行分组
    # groupBy传入的函数的 意思是: 通过这个函数, 确定按照谁来分组(返回谁即可)
    # 分组规则 和SQL是一致的, 也就是相同的在一个组(Hash分组)
    result = rdd.groupBy(lambda t: t[0])
    print(result.map(lambda t:(t[0], list(t[1]))).collect())

 运行结果:

 4.reduceByKey

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)
    rdd1 = sc.textFile("../data/words.txt", 3) #['sun wu kong', 'zhu ba jie', 'sun ba jie']
    print(rdd1.collect())
    rdd2 = rdd1.flatMap(lambda x: x.split(" "))#['sun', 'wu', 'kong', 'zhu', 'ba', 'jie', 'sun', 'ba', 'jie']
    print(rdd2.collect())
    rdd3 = rdd2.map(lambda x : (x,1))
    #[('sun', 1), ('wu', 1), ('kong', 1), ('zhu', 1), ('ba', 1), ('jie', 1), ('sun', 1), ('ba', 1), ('jie', 1)]
    print(rdd3.collect())
    rdd4 = rdd3.reduceByKey(lambda x1,x2: x1+x2)
    #[('sun', 2), ('kong', 1), ('wu', 1), ('zhu', 1), ('ba', 2), ('jie', 2)]
    print(rdd4.collect())

运行结果:

5.reduce(未找到)

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd = sc.parallelize(range(1, 10))
    rdd_res=rdd.reduce(lambda a, b: a + b)
    print("reduce结果为:",rdd_res)

 运行结果:从1加到9

6.map


from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9], 3)
    rdd3 = rdd1.map(fun)
    print(rdd3.collect())

 运行结果:

复习整理1_第4张图片

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([("a",1),("a",12),("a",3),("b",1),("c",1),],3)
    print(rdd1.glom().collect())
    rdd2 = rdd1.map(lambda x : (x[0], x[1] + 5))
    print(rdd2.glom().collect())

 运行结果:

复习整理1_第5张图片

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([("a",1,1),("a",1,2),("a",1,3),("b",1,1),("c",1,1),],3)
    print(rdd1.glom().collect())
    rdd2 = rdd1.map(lambda x : (x[0], x[1] + 5))
    print(rdd2.glom().collect())

 运行结果:

7.mapValues(上课讲了但是不在提纲中)

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([("a",(1,1)),("a",1,2),("a",1,3),("b",1,1),("c",1,1),],3)
    print(rdd1.glom().collect())
    rdd3 = rdd1.mapValues(lambda x : x*5)
    print(rdd3.glom().collect())

 运行结果:

8.takeOrdered

takeOrdered()可以按照升序或降序的方式获取元素,并返回排序后的结果。

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([3,-5,8,-2,4,1],3)
    print("rdd1的各个分区:",rdd1.glom().collect())
    result = rdd1.takeOrdered(3, lambda x: x*x)
    print(result)

运行结果:

 

9.fold

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
def fun(x):
    print(x,end="\n")
    return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize(range(1, 10), 9)
    print("rdd1的各个分区:",rdd1.glom().collect())

    result = rdd1.fold(10, lambda a,b:a+b)

    print(result)

 运行结果:

10.takeSample

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
# def fun(x):
#     print(x,end="\n")
#     return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize(range(5),3)
    print("rdd1的各个分区:", rdd1.glom().collect())
    result = rdd1.takeSample(False ,10)
    print(result)

运行结果:

复习整理1_第6张图片

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
# def fun(x):
#     print(x,end="\n")
#     return x*2

if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize(range(5),3)
    print("rdd1的各个分区:", rdd1.glom().collect())
    result = rdd1.takeSample(False ,3)
    print(result)

 运行结果:

复习整理1_第7张图片

11.partitionBy

from pyspark import SparkConf, SparkContext
import os

os.environ['PYSPARK_PYTHON'] = r'D:\Tools\Anaconda3\envs\pyspark\python.exe'
# def fun(x):
#     print(x,end="\n")
#     return x*2
def fun(key):
    print("key:",key)
    if "a"==key:
        return 2
    elif "b"==key:
        return 1
    else:
        return 0
if __name__ == '__main__':
    conf = SparkConf().setAppName("test").setMaster("local[*]")
    sc = SparkContext(conf=conf)

    rdd1 = sc.parallelize([("a",(1,1)),("a",(12,2)),("a",(3,2)),("b",(1,2)),("c",(1,2)),],3)
    print("rdd1:",rdd1.glom().collect())
    rdd2 = rdd1.partitionBy(5, partitionFunc=fun)
    print("rdd2:",rdd2.glom().collect())

运行结果:

复习整理1_第8张图片

 

你可能感兴趣的:(数学建模)