阅读全文:http://tecdat.cn/?p=10932
最近我们被客户要求撰写关于贝叶斯层次模型的研究报告,包括一些图形和统计输出。
在本文中,我将重点介绍使用集成嵌套 拉普拉斯近似方法的贝叶斯推理。可以估计贝叶斯 层次模型的后边缘分布。鉴于模型类型非常广泛,我们将重点关注用于分析晶格数据的空间模型
数据集:纽约州北部的白血病
为了说明如何与空间模型拟合,将使用纽约白血病数据集。该数据集记录了普查区纽约州北部的许多白血病病例。数据集中的一些变量是:
Cases
:1978-1982年期间的白血病病例数。POP8
:1980年人口。PCTOWNHOME
:拥有房屋的人口比例。PCTAGE65P
:65岁以上的人口比例。AVGIDIST
:到最近的三氯乙烯(TCE)站点的平均反距离。
鉴于有兴趣研究纽约州北部的白血病风险,因此首先要计算预期的病例数。这是通过计算总死亡率(总病例数除以总人口数)并将其乘以总人口数得出的:
rate <- sum(NY8$Cases) / sum(NY8$POP8)
NY8$Expected <- NY8$POP8 * rate
一旦获得了预期的病例数,就可以使用\_标准化死亡率\_(SMR)来获得原始的风险估计,该\_标准\_是将观察到的病例数除以预期的病例数得出的:
NY8$SMR <- NY8$Cases / NY8$Expected
疾病作图
在流行病学中,重要的是制作地图以显示相对风险的空间分布。在此示例中,我们将重点放在锡拉库扎市以减少生成地图的计算时间。因此,我们用锡拉丘兹市的区域创建索引:
# Subset Syracuse city
syracuse <- which(NY8$AREANAME == "Syracuse city")
可以使用函数spplot
(在包中sp
)简单地创建疾病图:
library(viridis)
## Loading required package: viridisLite
spplot(NY8[syracuse, ], "SMR", #at = c(0.6, 0.9801, 1.055, 1.087, 1.125, 13),
col.regions = rev(magma(16))) #gray.colors(16, 0.9, 0.4))
## Loading required package: viridisLite
可以轻松创建交互式地图
请注意,先前的地图还包括11个受TCE污染的站点的位置,可以通过缩小看到它。
点击标题查阅往期相关内容
[](http://mp.weixin.qq.com/s?__biz=MzA4MDUzOTIxNA==\&mid=2653830410\&idx=1\&sn=8d1f9df1e68e5e6720451be5a67fe779\&chksm=8478262bb30faf3d26e1559c943a5fdfde75b56405fdbff53a2fd56126b68a061652ec48549b\&scene=21#wechat_redirect)R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
左右滑动查看更多
01
02
03
04
混合效应模型
泊松回归
我们将考虑的第一个模型是没有潜在随机效应的Poisson模型,因为这将提供与其他模型进行比较的基准。
模型 :
请注意,它的glm
功能类似于该功能。在此,参数 E
用于预期的案例数。或 设置了其他参数来计算模型参数的边际\
(使用control.predictor
)并计算一些模型选择标准 (使用control.compute
)。
接下来,可以获得模型的摘要:
summary(m1)
##
## Call:
## Time used:
## Pre = 0.368, Running = 0.0968, Post = 0.0587, Total = 0.524
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.065 0.045 -0.155 -0.065 0.023 -0.064 0
## AVGIDIST 0.320 0.078 0.160 0.322 0.465 0.327 0
##
## Expected number of effective parameters(stdev): 2.00(0.00)
## Number of equivalent replicates : 140.25
##
## Deviance Information Criterion (DIC) ...............: 948.12
## Deviance Information Criterion (DIC, saturated) ....: 418.75
## Effective number of parameters .....................: 2.00
##
## Watanabe-Akaike information criterion (WAIC) ...: 949.03
## Effective number of parameters .................: 2.67
##
## Marginal log-Likelihood: -480.28
## Posterior marginals for the linear predictor and
## the fitted values are computed
具有随机效应的泊松回归
可以通过 在线性预测变量中包括iid高斯随机效应,将潜在随机效应添加到模型中,以解决过度分散问题。
现在,该模式的摘要包括有关随机效果的信息:
summary(m2)
##
## Call:
## Time used:
## Pre = 0.236, Running = 0.315, Post = 0.0744, Total = 0.625
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.126 0.064 -0.256 -0.125 -0.006 -0.122 0
## AVGIDIST 0.347 0.105 0.139 0.346 0.558 0.344 0
##
## Random effects:
## Name Model
## ID IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for ID 3712.34 11263.70 3.52 6.94 39903.61 5.18
##
## Expected number of effective parameters(stdev): 54.95(30.20)
## Number of equivalent replicates : 5.11
##
## Deviance Information Criterion (DIC) ...............: 926.93
## Deviance Information Criterion (DIC, saturated) ....: 397.56
## Effective number of parameters .....................: 61.52
##
## Watanabe-Akaike information criterion (WAIC) ...: 932.63
## Effective number of parameters .................: 57.92
##
## Marginal log-Likelihood: -478.93
## Posterior marginals for the linear predictor and
## the fitted values are computed
添加点估计以进行映射
这两个模型估计 可以被添加到 SpatialPolygonsDataFrame
NY8
NY8$FIXED.EFF <- m1$summary.fitted[, "mean"]
NY8$IID.EFF <- m2$summary.fitted[, "mean"]
spplot(NY8[syracuse, ], c("SMR", "FIXED.EFF", "IID.EFF"),
col.regions = rev(magma(16)))
晶格数据的空间模型
格子数据涉及在不同区域(例如,邻里,城市,省,州等)测量的数据。出现空间依赖性是因为相邻区域将显示相似的目标变量值。
邻接矩阵
可以使用poly2nb
package中的函数来计算邻接矩阵 spdep
。如果其边界 至少在某一点上接触 ,则此功能会将两个区域视为邻居:
这将返回一个nb
具有邻域结构定义的对象:
NY8.nb
## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 1624
## Percentage nonzero weights: 2.056712
## Average number of links: 5.779359
另外, 当多边形的重心 已知时,可以绘制对象:
plot(NY8)
plot(NY8.nb, coordinates(NY8), add = TRUE, pch = ".", col = "gray")
回归模型
通常情况是,除了\(y\_i \)之外,我们还有许多协变量 \(X\_i \)。因此,我们可能想对\(X\_i \)回归 \(y\_i \)。除了 协变量,我们可能还需要考虑数据的空间结构。\
可以使用不同类型的回归模型来建模晶格数据:
- 广义线性模型(具有空间随机效应)。
- 空间计量经济学模型。
线性混合模型
一种常见的方法(对于高斯数据)是使用\
具有随机效应的线性回归:
\ [\
Y = X \ beta + Zu + \ varepsilon\
]
随机效应的向量\(u \)被建模为多元正态分布:
\ [\
u \ sim N(0,\ sigma ^ 2\_u \ Sigma)\
]
\(\ Sigma \)的定义是,它会引起与相邻区域的更高相关性,\(Z \)是随机效果的设计矩阵,而\
\(\ varepsilon\_i \ sim N(0,\ sigma ^ 2),i = 1,\ ldots,n \)是一个误差项。
空间随机效应的结构
在\(\ Sigma \)中包括空间依赖的方法有很多:
- 同步自回归(SAR):
\ [\
\ Sigma ^ {-1} = [(I- \ rho W)'(I- \ rho W)]\
]
- 条件自回归(CAR):
\ [\
\ Sigma ^ {-1} =(I- \ rho W)\
]
(ICAR):
\ [\
\ Sigma ^ {-1} = diag(n\_i)– W\
]\(n\_i \)是区域\(i \)的邻居数。
- \(\ Sigma\_ {i,j} \)取决于\(d(i,j)\)的函数。例如:
\ [\
\ Sigma\_ {i,j} = \ exp \ {-d(i,j)/ \ phi }\
]
矩阵的“混合”(Leroux等人的模型):
\ [\
\ Sigma = [(1 – \ lambda)I\_n + \ lambda M] ^ {-1}; \ \ lambda \ in(0,1)\
]
ICAR模型
第一个示例将基于ICAR规范。请注意, 使用f
-函数定义空间潜在效果。这将需要 一个索引来识别每个区域中的随机效应,模型的类型 和邻接矩阵。为此,将使用稀疏矩阵。
##
## Call:
## Time used:
## Pre = 0.298, Running = 0.305, Post = 0.0406, Total = 0.644
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.122 0.052 -0.226 -0.122 -0.022 -0.120 0
## AVGIDIST 0.318 0.121 0.075 0.320 0.551 0.324 0
##
## Random effects:
## Name Model
## ID Besags ICAR model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for ID 3.20 1.67 1.41 2.79 7.56 2.27
##
## Expected number of effective parameters(stdev): 46.68(12.67)
## Number of equivalent replicates : 6.02
##
## Deviance Information Criterion (DIC) ...............: 904.12
## Deviance Information Criterion (DIC, saturated) ....: 374.75
## Effective number of parameters .....................: 48.31
##
## Watanabe-Akaike information criterion (WAIC) ...: 906.77
## Effective number of parameters .................: 44.27
##
## Marginal log-Likelihood: -685.70
## Posterior marginals for the linear predictor and
## the fitted values are computed
BYM模型
Besag,York和Mollié模型包括两个潜在的随机效应:ICAR 潜在效应和高斯iid潜在效应。线性预测变量\(\ eta\_i \)\
为:
\ [\
\ eta\_i = \ alpha + \ beta AVGIDIST\_i + u\_i + v\_i\
]
- \(u\_i \)是iid高斯随机效应
- \(v\_i \)是内在的CAR随机效应
##
## Call:
## Time used:
## Pre = 0.294, Running = 1, Post = 0.0652, Total = 1.36
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.123 0.052 -0.227 -0.122 -0.023 -0.121 0
## AVGIDIST 0.318 0.121 0.075 0.320 0.551 0.324 0
##
## Random effects:
## Name Model
## ID BYM model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for ID (iid component) 1790.06 1769.02 115.76 1265.24
## Precision for ID (spatial component) 3.12 1.36 1.37 2.82
## 0.975quant mode
## Precision for ID (iid component) 6522.28 310.73
## Precision for ID (spatial component) 6.58 2.33
##
## Expected number of effective parameters(stdev): 47.66(12.79)
## Number of equivalent replicates : 5.90
##
## Deviance Information Criterion (DIC) ...............: 903.41
## Deviance Information Criterion (DIC, saturated) ....: 374.04
## Effective number of parameters .....................: 48.75
##
## Watanabe-Akaike information criterion (WAIC) ...: 906.61
## Effective number of parameters .................: 45.04
##
## Marginal log-Likelihood: -425.65
## Posterior marginals for the linear predictor and
## the fitted values are computed
Leroux 模型
该模型是使用矩阵的“混合”(Leroux等人的模型)\
定义的,以定义潜在效应的精度矩阵:
\ [\
\ Sigma ^ {-1} = [(1-\ lambda)I\_n + \ lambda M]; \ \ lambda \ in(0,1)\
]
为了定义正确的模型,我们应采用矩阵\(C \)如下:
\ [\
C = I\_n – M; \ M = diag(n\_i)– W\
]
然后,\(\ lambda\_ {max} = 1 \)和
\ [\
\ Sigma ^ {-1} =\
\ frac {1} {\ tau}(I\_n- \ frac {\ rho} {\ lambda\_ {max}} C)=\
\ frac {1} {\ tau}(I\_n- \ rho(I\_n – M))= \ frac {1} {\ tau}((1- \ rho)I\_n + \ rho M)\
]
为了拟合模型,第一步是创建矩阵\(M \):
我们可以检查最大特征值\(\ lambda\_ {max} \)是一个:
max(eigen(Cmatrix)$values)
## [1] 1
## [1] 1
该模型与往常一样具有功能inla
。注意,\(C \)矩阵使用参数\
传递给f
函数Cmatrix
:
##
## Call:
## Time used:
## Pre = 0.236, Running = 0.695, Post = 0.0493, Total = 0.98
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.128 0.448 -0.91 -0.128 0.656 -0.126 0.075
## AVGIDIST 0.325 0.122 0.08 0.327 0.561 0.330 0.000
##
## Random effects:
## Name Model
## ID Generic1 model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for ID 2.720 1.098 1.27 2.489 5.480 2.106
## Beta for ID 0.865 0.142 0.47 0.915 0.997 0.996
##
## Expected number of effective parameters(stdev): 52.25(13.87)
## Number of equivalent replicates : 5.38
##
## Deviance Information Criterion (DIC) ...............: 903.14
## Deviance Information Criterion (DIC, saturated) ....: 373.77
## Effective number of parameters .....................: 53.12
##
## Watanabe-Akaike information criterion (WAIC) ...: 906.20
## Effective number of parameters .................: 48.19
##
## Marginal log-Likelihood: -474.94
## Posterior marginals for the linear predictor and
## the fitted values are computed
空间计量经济学模型
空间计量经济学是通过 对空间建模略有不同的方法开发的。除了使用潜在效应,还可以对空间 依赖性进行显式建模。
同步自回归模型(SEM)
该模型包括协变量和误差项的自回归:
\ [\
y = X \ beta + u; u = \ rho Wu + e; e \ sim N(0,\ sigma ^ 2)\
]
\ [\
y = X \ beta + \ varepsilon; \ varepsilon \ sim N(0,\ sigma ^ 2(I- \ rho W)^ {-1}(I- \ rho W')^ {-1})\
]
空间滞后模型(SLM)
该模型包括协变量和响应的自回归:
\ [\
y = \ rho W y + X \ beta + e; e \ sim N(0,\ sigma ^ 2)\
]
\ [\
y =(I- \ rho W)^ {-1} X \ beta + \ varepsilon; \ \ varepsilon \ sim N(0,\ sigma ^ 2(I- \ rho W)^ {-1}(I- \ rho W')^ {-1})\
]
潜在影响slm
现在包括一个\_实验\_所谓的新的潜在影响slm
,以 符合以下模型:
\ [\
\ mathbf {x} =(I\_n- \ rho W)^ {-1}(X \ beta + e)\
]
该模型的元素是:
- \(W \)是行标准化的邻接矩阵。
- \(\ rho \)是空间自相关参数。
- \(X \)是协变量的矩阵,系数为\(\ beta \)。
- \(e \)是具有方差\(\ sigma ^ 2 \)的高斯iid误差。
该slm
潜效果的实验,它可以 与所述线性预测其他效果组合。
模型定义
为了定义模型,我们需要:
X
:协变量矩阵W
:行标准化的邻接矩阵Q
:系数\(\ beta \)的精确矩阵- 范围\(\ RHO \) ,通常由本征值定义
slm
潜在作用是通过参数传递 args.sm
。在这里,我们创建了一个具有相同名称的列表,以将 所有必需的值保存在一起:
#Arguments for 'slm'
args.slm = list(
rho.min = rho.min ,
rho.max = rho.max,
W = W,
X = mmatrix,
Q.beta = Q.beta
)
此外,还设置了精度参数\(\ tau \)和空间 自相关参数\(\ rho \)的先验:
#rho的先验
hyper.slm = list(
prec = list(
prior = "loggamma", param = c(0.01, 0.01)),
rho = list(initial=0, prior = "logitbeta", param = c(1,1))
)
先前的定义使用具有不同参数的命名列表。参数 prior
定义了使用之前param
及其参数。在此,为 精度分配了带有参数\(0.01 \)和\(0.01 \)的伽玛先验值,而 为空间自相关参数指定了带有参数\(1 \) 和\(1 \)的beta先验值(即a区间\(((1,1)\))中的均匀先验。
模型拟合
##
## Call:
## Time used:
## Pre = 0.265, Running = 1.2, Post = 0.058, Total = 1.52
## Random effects:
## Name Model
## ID SLM model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for ID 8.989 4.115 3.709 8.085 19.449 6.641
## Rho for ID 0.822 0.073 0.653 0.832 0.936 0.854
##
## Expected number of effective parameters(stdev): 62.82(15.46)
## Number of equivalent replicates : 4.47
##
## Deviance Information Criterion (DIC) ...............: 902.32
## Deviance Information Criterion (DIC, saturated) ....: 372.95
## Effective number of parameters .....................: 64.13
##
## Watanabe-Akaike information criterion (WAIC) ...: 905.19
## Effective number of parameters .................: 56.12
##
## Marginal log-Likelihood: -477.30
## Posterior marginals for the linear predictor and
## the fitted values are computed
系数的估计显示为随机效应的一部分:
round(m.slm$summary.random$ID[47:48,], 4)
## ID mean sd 0.025quant 0.5quant 0.975quant mode kld
## 47 47 0.4634 0.3107 -0.1618 0.4671 1.0648 0.4726 0
## 48 48 0.2606 0.3410 -0.4583 0.2764 0.8894 0.3063 0
空间自相关以内部比例报告(即 0到1 之间),并且需要重新缩放:
## Mean 0.644436
## Stdev 0.145461
## Quantile 0.025 0.309507
## Quantile 0.25 0.556851
## Quantile 0.5 0.663068
## Quantile 0.75 0.752368
## Quantile 0.975 0.869702
``````
plot(marg.rho, type = "l", main = "Spatial autocorrelation")
结果汇总
NY8$ICAR <- m.icar$summary.fitted.values[, "mean"]
NY8$BYM <- m.bym$summary.fitted.values[, "mean"]
NY8$LEROUX <- m.ler$summary.fitted.values[, "mean"]
NY8$SLM <- m.slm$summary.fitted.values[, "mean"]
spplot(NY8[syracuse, ],
c("FIXED.EFF", "IID.EFF", "ICAR", "BYM", "LEROUX", "SLM"),
col.regions = rev(magma(16))
)
注意空间模型如何产生相对风险的更平滑的估计。
为了选择最佳模型, 可以使用上面计算的模型选择标准:
参考文献
Bivand, R., E. Pebesma and V. Gómez-Rubio (2013). *Applied spatial data\
analysis with R*. Springer-Verlag. New York.
本文摘选 《 R语言使用贝叶斯层次模型进行空间数据分析 》 ,点击“阅读原文”获取全文完整代码数据资料。
点击标题查阅往期内容
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据\
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例\
用SPSS估计HLM多层(层次)线性模型模型\
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系\
R语言LME4混合效应模型研究教师的受欢迎程度R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例\
R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化\
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例\
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据R语言 线性混合效应模型实战案例\
R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据\
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状\
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究\
R语言建立和可视化混合效应模型mixed effect model\
R语言LME4混合效应模型研究教师的受欢迎程度\
R语言 线性混合效应模型实战案例\
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)\
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究\
R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题\
基于R语言的lmer混合线性回归模型\
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型\
R语言分层线性模型案例\
R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型\
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM\
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型\
SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据\
用SPSS估计HLM多层(层次)线性模型模型