算法学习day15

文章目录

      • 102. 二叉树层序遍历
        • 思路
        • 递归
      • 226 翻转二叉树
        • 递归
        • 迭代
      • 101 对称二叉树
        • 递归
      • 总结

102. 二叉树层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)

示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:

输入:root = [1]
输出:[[1]]
示例 3:

输入:root = []
输出:[]

提示:

  • 树中节点数目在范围 [0, 2000]
  • -1000 <= Node.val <= 1000

思路

  • 广度优先,借助队列实现,.
  • 队列的长度也就是每层的元素个数,也就是出队列的个数,即每层的元素值
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            List<Integer> list = new ArrayList<>();
            for (int i = 0; i < size; i++) {
                TreeNode node = queue.poll();
                list.add(node.val);
                if (node.left!= null) {
                    queue.offer(node.left);
                }
                if (node.right!= null) {
                    queue.offer(node.right);
                }
            }
            res.add(list);
        }
        return res;
    }
}

递归

  • 递归的本质即是“栈”
  • 深度优先遍历
class Solution {
    List<List<Integer>> res = new ArrayList<>();

    public List<List<Integer>> levelOrder(TreeNode root) {
        level(root, 1);
        return res;
    }
    public void level(TreeNode root, int deepth){
        if(root == null)    return ;
        //返回列表中的元素个数==层级数
        if(res.size() < deepth){
            List<Integer> item = new ArrayList<Integer>();
            res.add(item);
        }
        res.get(deepth-1).add(root.val);
        //左右节点位于同一层级deepth+1
        level(root.left, deepth+1);
        level(root.right, deepth+1);
    }
}

226 翻转二叉树

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3]
输出:[2,3,1]
示例 3:

输入:root = []
输出:[]
提示:

树中节点数目范围在 [0, 100] 内
-100 <= Node.val <= 100

递归

  • 观察翻转后的结果,实质上时每个节点左右子树的翻转,每个都翻转可联想到递归实现
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        //终止条件 节点为null
        if(root == null)    return root;
        //递归内容,交换左右节点

        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;
        //递归入参,每个节点
        invertTree(root.left);
        invertTree(root.right);

        return root;


    }
}

迭代

  • 迭代遍历中先序遍历:根左右,入栈跟右左,交换左右节点顺序即可
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if(root == null) {
            return null;
        }   
        Stack<TreeNode> stack = new Stack<TreeNode>();
        stack.push(root);
        while(!stack.isEmpty()) {
            TreeNode node = stack.pop();
            if(node.right!= null) {
                stack.push(node.right);
            }
            if(node.left!= null) {
                stack.push(node.left);
            }
            TreeNode temp = node.left;
            node.left = node.right;
            node.right = temp;
        }
        return root;
    }
}

101 对称二叉树

给你一个二叉树的根节点 root , 检查它是否轴对称。

输入:root = [1,2,2,3,4,4,3] 输出:true

输入:root = [1,2,2,null,3,null,3]
输出:false
提示:

树中节点数目在范围 [1, 1000] 内
-100 <= Node.val <= 100

递归

  • 对称,左右子树的内测和外侧要分别相同,左子树的左侧右子树的右侧;左子树的右侧右子树的左侧

  • 递归入参:内外侧子树

  • 终止条件:有一个子树为空,或者值不相等

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {

        return checkLeftEquelsRight(root.left, root.right);
    }
    public boolean checkLeftEquelsRight(TreeNode left, TreeNode right) {
        if(left ==null && right ==null){
            return true;
        }
        if(right!=null && left == null){
            return false;
        }
        if(left!=null && right==null){
            return false;
        }
        if(left.val !=  right.val) {
            return false;
        }
        return checkLeftEquelsRight(left.left,right.right) && checkLeftEquelsRight(left.right,right.left);
    }

}	

总结

  • 二叉树的解法需要借助:栈和队列实现,
  • 递归很容易也很难,三要素:终止条件、返回值、局部变量

你可能感兴趣的:(算法,算法,学习,数据结构)