注意力机制——ECANet及Mobilenetv2模型应用

一、介绍
ECANet(CVPR 2020)作为一种轻量级的注意力机制,其实也是通道注意力机制的一种实现形式。其论文和开源代码为:
论文地址:https://arxiv.org/abs/1910.03151
代码:https://github.com/BangguWu/ECANet
ECA模块,去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。
具体的讲:通过共享相同的学习参数,通过内核大小为k的1维卷积来实现通道之间的信息交互:(一维卷积和1 × 1 卷积是不同的,一维指的是1 × k 的卷积)
ECA-Net可以插入到其他CNN网络中来增强其性能,比如:插入到ResNet、MobileNetV2中。本文主要将ECA模块加入到Mobilenetv2的残差堆叠块中。
文中同样附上SENet的嵌入代码(已注释),如有需要,可进行比较;因项目需要转换caffe模型(具体torch如何转,请看之前的博文),经测试SENet虽然转换成功,但测试时所需的caffe库不支持,所以换成ECA-Net,经转换测试,可正常出结果,且效果提升大约五个点左右。
ReLU6替换为Leakyrelu,同样是因为不支持的原因(板子太老)
二、代码
eca_module.py

import torch
from torch import nn
from torch.nn.parameter import Parameter

class eca_layer(nn.Module):
    """Constructs a ECA module.
    Args:
        channel: Number of channels of the input feature map
        k_size: Adaptive selection of kernel size
    """
    def __init__(self, channel, k_size=3):
        super(eca_layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) 
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # feature descriptor on the global spatial information
        y = self.avg_pool(x)

        # Two different branches of ECA module
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)

        # Multi-scale information fusion
        y = self.sigmoid(y)

        return x * y.expand_as(x)

eca_mobilenetv2.py

import math
import os

import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo

from .eca_module import eca_layer

BatchNorm2d = nn.BatchNorm2d

def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        BatchNorm2d(oup),
        # nn.ReLU6(inplace=True)
        nn.LeakyReLU(0.1)
    )

def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        BatchNorm2d(oup),
        # nn.ReLU6(inplace=True)
        # nn.ReLU(inplace=True)
        nn.LeakyReLU(0.1)
    )

def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6

class SELayer(nn.Module):
    def __init__(self, channel, reduction=4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
                nn.Linear(channel, _make_divisible(channel // reduction, 8)),
                nn.ReLU(inplace=True),
                nn.Linear(_make_divisible(channel // reduction, 8), channel),
                h_sigmoid()
        )
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio,k_size):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio == 1:
            layers.append(eca_layer(oup, k_size))
            self.conv = nn.Sequential(
                #--------------------------------------------#
                #   进行3x3的逐层卷积,进行跨特征点的特征提取
                #--------------------------------------------#
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                BatchNorm2d(hidden_dim),
                # nn.ReLU6(inplace=True),
                nn.LeakyReLU(0.1),
                # SELayer(hidden_dim),
                #-----------------------------------#
                #   利用1x1卷积进行通道数的调整
                #-----------------------------------#
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                BatchNorm2d(oup),
            )
        else:
            layers.append(eca_layer(oup, k_size))
            self.conv = nn.Sequential(
                #-----------------------------------#
                #   利用1x1卷积进行通道数的上升
                #-----------------------------------#
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                BatchNorm2d(hidden_dim),
                # nn.ReLU6(inplace=True),
                nn.LeakyReLU(0.1),
                #--------------------------------------------#
                #   进行3x3的逐层卷积,进行跨特征点的特征提取
                #--------------------------------------------#
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                BatchNorm2d(hidden_dim),
                # SELayer(hidden_dim),
                # nn.ReLU6(inplace=True),
                nn.LeakyReLU(0.1),
                #-----------------------------------#
                #   利用1x1卷积进行通道数的下降
                #-----------------------------------#
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, n_class=1000, input_size=224, width_mult=1.):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1], # 256, 256, 32 -> 256, 256, 16
            [6, 24, 2, 2], # 256, 256, 16 -> 128, 128, 24   2
            [6, 32, 3, 2], # 128, 128, 24 -> 64, 64, 32     4
            [6, 64, 4, 2], # 64, 64, 32 -> 32, 32, 64       7
            [6, 96, 3, 1], # 32, 32, 64 -> 32, 32, 96
            [6, 160, 3, 2], # 32, 32, 96 -> 16, 16, 160     14
            [6, 320, 1, 1], # 16, 16, 160 -> 16, 16, 320
        ]

        assert input_size % 32 == 0
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        # 512, 512, 3 -> 256, 256, 32
        self.features = [conv_bn(3, input_channel, 2)]

        for t, c, n, s in interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):
				# 判断 ksize 值
                if c < 96:
                    ksize = 1
                else:
                    ksize = 3
           #     stride = s if i == 0 else 1

                if i == 0:
                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t, k_size=ksize))
                else:
                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t, k_size=ksize))
                input_channel = output_channel

        self.features.append(conv_1x1_bn(input_channel, self.last_channel))
        self.features = nn.Sequential(*self.features)

        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)

        x = x.mean(3).mean(2)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def load_url(url, model_dir='./model_data', map_location=None):
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    filename = url.split('/')[-1]
    cached_file = os.path.join(model_dir, filename)
    if os.path.exists(cached_file):
        return torch.load(cached_file, map_location=map_location)
    else:
        return model_zoo.load_url(url,model_dir=model_dir)

def mobilenetv2(pretrained=False, **kwargs):
    model = MobileNetV2(n_class=1000, **kwargs)
    if pretrained:
        model.load_state_dict(load_url('https://github.com/bubbliiiing/deeplabv3-plus-pytorch/releases/download/v1.0/mobilenet_v2.pth.tar'), strict=False)
    return model

if __name__ == "__main__":
    model = mobilenetv2()
    for i, layer in enumerate(model.features):
        print(i, layer)

你可能感兴趣的:(深度学习,caffe,人工智能)