Hive学习---5、分区表和分桶表

1、分区表和分桶表

1.1 分区表

Hive中的分区就是把一张大表的数据按照业务需求分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。

1.1.1 分区表基本语法

1、创建分区表

create table dept_partition
(
    deptno int,    --部门编号
    dname  string, --部门名称
    loc    string  --部门位置
)
    partitioned by (day string)
    row format delimited fields terminated by '\t';

2、分区表读写数据
(1)写数据

  • load

    • 数据准备
      在/opt/module/hive/datas/路径上创建文件dept_20220401.log,并输入如下内容
    10	行政部	1700
    20	财务部	1800
    
    • 装载数据

      load data local inpath '/opt/module/hive/datas/dept_20220401.log' 
      into table dept_partition 
      partition(day='20220401');
      

(2)insert
将day='20220401’分区的数据插入到day='20220402’分区,可执行如下装载语句

insert overwrite table dept_partition partition(day='20220402')
select deptno, dname, loc
from dept_partition
where day='2020-04-01'

2、读数据
查询分区表数据时,可以将分区字段看作表的伪列,可像其他字段一样使用分区字段。

select deptno, dname, loc ,day
from dept_partition
where day = '2020-04-01';

3、分区表基本操作
(1)查看所有分区信息

select partitions dept_partition;

(2)增加分区

  • 创建单个分区
alter table dept_partition
add partition(day='20220403');
  • 同时创建多个分区(分区之间不能有逗号)
alter table dept_partition 
add partition(day='20220404') partition(day='20220405');

(3)删除分区

  • 删除单个分区
alter table dept_partition 
drop partition(day=''20220403);
  • 同时删除多个分区(分区之间必须有逗号)
alter table dept_partition
drop partition(day='20220404'),partition(day='20220405');

4、修复分区
Hive将分区表的所以分区信息都保存在了元数据中,只有元数据与HDFS上的分区路径一致时,分区表才能正常读写数据。若手动创建/删除分区路径,Hive都是感知不到的。这样会导致Hive的元数据和HDFS的分区路径不一致。再比如,若分区表位外部表,用户执行drop Partition 命令后,分区元数据会被删除,而HDFS的分区路径不会被删除,同样会导致Hive的元数据和HDFS的分区路径不一致。
若出现元数据和HDFS路径不一致的情况,可通过如下几种手段恢复。
(1)add partition
若手动创建HDFS的分区路径,Hive无法识别,可通过add partition命令增加分区元数据信息,从而使元数据和分区路径保持一致。
(2)drop partition
若手动删除HDFS的分区路径,Hive无法识别,可通过drop partition命令删除分区元数据信息,从而使元数据和分区路径保持一致。
(3)msck
若分区元数据和HDFS的分区路径不一致去,还可以使用msck命令进行修复,以下是该命令的用法说明。

msck repair table table_name [add/drop/sync partitions];

说明:
msck repair table table_name add partitions :该命令会增加HDFS路径存在但元数据缺失的分区信息。
msck repair table table_name drop partitions:该命令会删除HDFS路径已经删除,但是元数据仍然存在的分区信息。
msck repair table table_name sync partition :该命令会同步HDFS路径和元数据分区信息,相当于同时执行上述的两个命令。
msck repair table table_name :等价于 msck repair table table_name add partitions 命令。

1.1.2 二级分区表

思考:如果一天内的日志数据量也很大,如何再将数据拆分?答案是二级分区表,例如可以在按天分区的基础上,再对每天的数据按小时进行分区。
1、二级分区建表语句

create table dept_partition2(
    deptno int,    -- 部门编号
    dname string, -- 部门名称
    loc string     -- 部门位置
)
partitioned by (day string, hour string)
row format delimited fields terminated by '\t';

2、数据装载语句

load data local inpath '/opt/module/hive/datas/dept_20220401.log' 
into table dept_partition2 
partition(day='20220401', hour='12');

3、查询分区数据

select 
    * 
from dept_partition2 
where day='20220401' and hour='12';
1.1.3 动态分区

动态分区时指向分区表insert数据时,被写往的分区不由用户指定,而是由每行数据的最后一个字段的值来动态决定。使用动态分区,可只用一个insert语句将数据写入多个分区。
1、动态分区相关参数
(1)动态分区功能总开关(默认true,开启)

set hive.exec.dynamic.partition=true

(2)严格模式和非严格模式
动态分区的模式,默认strict(严格模式),要求必须指定一个分区为静态分区,nonstrict(非严格模式)允许所有的分区字段都使用动态分区。

set hive.exec.max.dynamic.parition.mode=nonstrict

(3)一条insert语句可同时创建的最大的分区个数,默认是1000

set hive.exec.max.dynamic.partitions=1000

(4)单个Mapper或者Reducer可同时创建的最大的分区个数,默认是100

set hive.exec.max.dynamic.partitions.pernode=100

(5)一条insert语句可以创建的最大的文件个数,默认100000

hive.exec.max.created.files=10000

(6)当查询结果为空时且进行动态分区时,是否抛出异常,默认false。

hive.exec.on.empty.partition=false

2、实例操作
需求:将dept表中的数据按照地区(loc字段),插入到目标表dept_partition_dynamic的相应分区中。
(1)创建目标分区

create table dept_partition_dynamic(
    id int, 
    name string
) 
partitioned by (loc int) 
row format delimited fields terminated by '\t';

(2)设置动态分区

set hive.exec.dynamic.partition.mode = nonstrict;
insert into table dept_partition_dynamic 
partition(loc) 
select 
    deptno, 
    dname, 
    loc 
from dept;

(3)查看目标分区表的分区情况

show partitions dept_partition_dynamic;

1.2 分桶表

分区提供一个隔离数据和优化查询的便利方式。不过,并不是所有的数据集都可以形成合理的分区。对于一张表或者分区,Hive可以进一步组织成桶,也就是更为细粒度的数据范围划分,分区针对的是数据的储存路径,分桶针对的是数据文件。

分桶表的基本原理是首先为每行数据计算一个指定字段的数据的hash值,然后模以一个指定的分桶数,最后将取模运算结果相同的行,写入同一个文件中,这个文件就称为一个分桶(bucket)。

1.2.1 分桶表基本语法

1、建表语句

create table stu_buck(
    id int, 
    name string
)
clustered by(id) 
into 4 buckets
row format delimited fields terminated by '\t';

2、数据装载

  • 数据准备
    在/opt/module/hive/datas/路径上创建student.txt文件,并输入如下内容。

    1001	student1
    1002	student2
    1003	student3
    1004	student4
    1005	student5
    1006	student6
    1007	student7
    1008	student8
    1009	student9
    1010	student10
    1011	student11
    1012	student12
    1013	student13
    1014	student14
    1015	student15
    1016	student16
    
  • 导入数据到分桶中
    说明:Hive新版本(3)load数据可以直接跑MapReduce,老版的Hive(1,2)需要将数据传到一张表中,再通过查询的方式导入到分桶表中。

load data local inpath '/opt/module/hive/datas/student.txt' 
into table stu_buck;

(3)查看创建的分桶表中是否分成四个桶
Hive学习---5、分区表和分桶表_第1张图片
(4)观察每个分桶中的数据

1.2.2 分桶排序表

1、建表语句

create table stu_buck_sort(
    id int, 
    name string
)
clustered by(id) sorted by(id)
into 4 buckets
row format delimited fields terminated by '\t';

2、数据装载

  • 导入数据到分桶表中

    load data local inpath '/opt/module/hive/datas/student.txt' 
    into table stu_buck_sort;
    
  • 查看创建的分桶表中是否分成4个桶
    Hive学习---5、分区表和分桶表_第2张图片

  • 观察每个分桶中的数据(会发现每个分桶中的数据按照stu_id升序)

你可能感兴趣的:(Hive学习,hive,hadoop,数据仓库,学习,大数据)