Day 1 | 704. Binary Search | 27. Remove Element | 35. Search Insert Position | 34. First and Last Position of Element in Sorted Array
Day 2 | 977. Squares of a Sorted Array | 209. Minimum Size Subarray Sum | 59. Spiral Matrix II
Day 3 | 203. Remove Linked List Elements | 707. Design Linked List | 206. Reverse Linked List
Day 4 | 24. Swap Nodes in Pairs| 19. Remove Nth Node From End of List| 160.Intersection of Two Lists
Day 6 | 242. Valid Anagram | 349. Intersection of Two Arrays | 202. Happy Numbe | 1. Two Sum
Day 7 | 454. 4Sum II | 383. Ransom Note | 15. 3Sum | 18. 4Sum
Day 8 | 344. Reverse String | 541. Reverse String II | 替换空格 | 151.Reverse Words in a String | 左旋转字符串
Day 9 | 28. Find the Index of the First Occurrence in a String | 459. Repeated Substring Pattern
Day 10 | 232. Implement Queue using Stacks | 225. Implement Stack using Queue
Day 11 | 20. Valid Parentheses | 1047. Remove All Adjacent Duplicates In String | 150. Evaluate RPN
Day 13 | 239. Sliding Window Maximum | 347. Top K Frequent Elements
Day 14 | 144.Binary Tree Preorder Traversal | 94.Binary Tree Inorder Traversal| 145.Binary Tree Postorder Traversal
Day 15 | 102. Binary Tree Level Order Traversal | 226. Invert Binary Tree | 101. Symmetric Tree
Day 16 | 104.MaximumDepth of BinaryTree| 111.MinimumDepth of BinaryTree| 222.CountComplete TreeNodes
Day 17 | 110. Balanced Binary Tree | 257. Binary Tree Paths | 404. Sum of Left Leaves
Day 18 | 513. Find Bottom Left Tree Value | 112. Path Sum | 105&106. Construct Binary Tree
Question Link
1、Normal Solution(define new arrays)
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
if(nums.length == 0)
return null;
if(nums.length == 1)
return new TreeNode(nums[0]);
// Find the max value and the index of the max value
int maxValue = 0;
int maxValueIndx = 0;
for(int i = 0; i < nums.length; i++){
if(nums[i] > maxValue){
maxValue = nums[i];
maxValueIndx = i;
}
}
TreeNode node = new TreeNode(maxValue);
// Find the left subtree and thee right subtree
int[] nums_left = new int[maxValueIndx];
int[] nums_right = new int[nums.length - maxValueIndx - 1];
System.arraycopy(nums, 0, nums_left, 0, maxValueIndx);
System.arraycopy(nums, maxValueIndx+1, nums_right, 0, nums.length - maxValueIndx - 1);
node.left = constructMaximumBinaryTree(nums_left);
node.right = constructMaximumBinaryTree(nums_right);
return node;
}
}
2、Normal Solution(does’t define new arrays)
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return traversal(nums, 0, nums.length); // left closed right opened
}
TreeNode traversal(int[] nums, int leftIndex, int rightIndex){
if(rightIndex - leftIndex < 1)
return null;
if(rightIndex - leftIndex == 1)
return new TreeNode(nums[leftIndex]);
// Find the max value and the index of the max value
int maxValue = 0;
int maxValueIndex = 0;
for(int i = leftIndex; i < rightIndex; i++){
if(nums[i] > maxValue){
maxValue = nums[i];
maxValueIndex = i;
}
}
TreeNode node = new TreeNode(maxValue);
node.left = traversal(nums, leftIndex, maxValueIndex);
node.right = traversal(nums, maxValueIndex + 1, rightIndex);
return node;
}
}
left closed right open
Question Link
1、Recursion Method
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if(root1 == null)
return root2;
if(root2 == null)
return root1;
TreeNode node = new TreeNode(root1.val + root2.val);
node.left = mergeTrees(root1.left, root2.left);
node.right = mergeTrees(root1.right, root2.right);
return node;
}
}
2、Iterative Method
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if(root1 == null)
return root2;
if(root2 == null)
return root1;
Deque<TreeNode> deque = new LinkedList<>();
deque.offer(root1);
deque.offer(root2);
while(!deque.isEmpty()){
TreeNode node1 = deque.poll();
TreeNode node2 = deque.poll();
node1.val += node2.val;
if(node1.left!=null && node2.left!=null){
deque.offer(node1.left);
deque.offer(node2.left);
}
if(node1.right!=null && node2.right!=null){
deque.offer(node1.right);
deque.offer(node2.right);
}
if(node1.left==null && node2.left!=null){
node1.left = node2.left;
}
if(node1.right==null && node2.right!=null){
node1.right = node2.right;
}
}
return root1;
}
}
Question Link
1、Recursion Method
class Solution {
public TreeNode searchBST(TreeNode root, int val) {
if(root == null || root.val == val)
return root;
TreeNode node = null;
if(root.val > val)
node = searchBST(root.left, val);
if(root.val < val)
node = searchBST(root.right, val);
return node;
}
}
2、Iterative Method
class Solution {
public TreeNode searchBST(TreeNode root, int val) {
while(root != null){
if(root.val == val)
return root;
else if(root.val > val)
root = root.left;
else if(root.val < val)
root = root.right;
}
return null;
}
}
Question Link
class Solution {
long max_val = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
boolean left = isValidBST(root.left);
if(root.val > max_val)
max_val = root.val;
else
return false;
boolean right = isValidBST(root.right);
return left&&right;
}
}
A null tree can be thought of as all kinds of trees.