摘要
科学地解决能源三气的计量问题,一直是业界困扰的问题。进入二十一世纪以来,用于测量气体流量的超声波流量计以其无压损、无阻力、量程比宽、受流体限制少等优点受到业界的广泛关注。随着国内人民生活水平的提高,科技不断地进步,控制不断地完善,从而促使超声波技术在气体流量检测系统领域占据主导权,也使得气体流量测量仪被广泛应用。在超声波设计领域中,气体流量检测技术成为目前一处亮丽的风景线,因为其开发资源众多,开发经验丰富,最重要的是成本较低,控制在用户可承受的范围内,使用超声波的方式搭建气体流量检测系统,气体流量测量仪逐渐成为世界各国关注的重点。
软件程序上选用KeilC语言编写,主要包括初始化配置模块、脉冲发射模块、数据采集模块、流速及流量计算模块、LCD驱动及显示模块等。完成硬件电路的设计、焊接和软件程序的编写,进行系统的整机调试,对实际中出现误差的可能性做具体的分析。
本文主要介绍气体流量测量仪的设计,首先介绍超声波检测的基本原理以及其发展历史、目前现状等。然后对设计中的数字式气体流量测量仪的总体设计及各功能模块进行了探讨,确定了气体流量测量仪设计的解决方案并对系统解决方案中的主控芯片和可编程逻辑控制芯片进行了选型。之后重点研究数字化气体流量测量仪系统的硬件设计,包括超声波的发射电路,接收电路,信号调理电路以及数据采集处理系统的设计和实现。最后介绍了气体流量测量仪系统的软件设计,对系统软件设计的总体流程、超声波激励脉冲信号产生、数据采集系统的逻辑控制以及回波信号的数据处理进行了介绍。
关键词:超声波气体流量计;单片机;LCD,数据采集
It has always been a perplexing problem for the industry to solve the measurement problem of energy three gases scientifically. Since the beginning of the 21st century, ultrasonic flowmeter used to measure gas flow has been widely concerned by the industry for its advantages of no pressure loss, no resistance, wide range ratio and less fluid restriction. With the improvement of the living standard of the domestic people, the continuous progress of science and technology, and the continuous improvement of control, so as to promote the ultrasonic technology in the field of gas flow detection system occupy the dominant right, but also make the gas flow measurement instrument is widely used. In the field of ultrasonic design, gas flow detection technology has become a beautiful landscape at present, because of its development resources, rich experience, the most important is the low cost, control in the user's affordable range, the use of ultrasonic way to build gas flow detection system, gas flow measurement instrument has gradually become the focus of the world.
The software program is written in KeilC language, including initial configuration module, pulse transmission module, data acquisition module, flow rate and flow calculation module, LCD driver and display module. Complete the hardware circuit design, welding and software program writing, the system debugging, the actual error of the possibility to do a specific analysis.
This paper mainly introduces the design of gas flow measuring instrument, first introduces the basic principle of ultrasonic detection and its development history, current situation and so on. Then the overall design and functional modules of the digital gas flow measuring instrument in the design are discussed, and the design solutions of the gas flow measuring instrument are determined and the main control chip and programmable logic control chip in the system solution are selected. Then focus on the digital gas flow measuring instrument system hardware design, including ultrasonic transmission circuit, receiving circuit, signal conditioning circuit and data acquisition and processing system design and implementation. Finally, the software design of gas flow measuring instrument system is introduced, and the overall process of system software design, the generation of ultrasonic excitation pulse signal, the logic control of data acquisition system and the data processing of echo signal are introduced.
Keywords: Ultrasonic gas flowmeter; Single chip microcomputer; LCD, data acquisition
目录
摘要............................................................................................................................. I
Abstract................................................................................................................... III
第一章 绪论............................................................................................................. 1
1.1引言............................................................................................................. 1
1.2研究目的与意义........................................................................................ 2
1.3国内外研究现状........................................................................................ 3
1.4课题研究内容及章节安排........................................................................ 5
第二章 超声波检测基本原理及方法................................................................... 7
2.1超声波的定义及基本性质........................................................................ 7
2.1.1超声波定义及特点......................................................................... 7
2.1.2超声波的速度及波长.................................................................... 7
2.1.3超声波的衰减................................................................................. 8
2.2超声换能器................................................................................................. 8
2.2.1超声换能器的定义......................................................................... 8
2.2.2超声换能器的主要性能参数........................................................ 8
2.3流量测量原理及方法................................................................................ 9
2.3.1测量原理......................................................................................... 9
2.3.2测量方法......................................................................................... 9
2.4机械振动与超声波.................................................................................. 10
2.4.1超声场的基本物理量和超声波波型......................................... 10
2.4.2金属探伤中的超声波波型.......................................................... 11
2.5超声场及介质的声参量.......................................................................... 12
2.5.1描述超声场的物理量.................................................................. 12
2.5.2介质的声参量............................................................................... 13
第三章 系统硬件设计.......................................................................................... 14
3.1系统硬件整体结构框图.......................................................................... 14
3.2主控制器设计.......................................................................................... 15
3.2.1芯片介绍....................................................................................... 15
3.2.2时钟电路设计............................................................................... 17
3.2.3复位电路设计............................................................................... 18
3.3超声波控制电路...................................................................................... 19
3.3.1超声波传感器............................................................................... 19
3.3.2超声波电路设计........................................................................... 20
3.4激励电路设计.......................................................................................... 20
3.5A/D转换电路设计................................................................................... 21
3.5.1 A/D 转换器的选择...................................................................... 21
3.5.2 ADC0832 的介绍........................................................................ 21
3.5.3 单片机对 ADC0832 的控制原理的介绍............................... 22
3.6显示电路设计......................................................................................... 23
第四章 系统软件部分设计.................................................................................. 25
4.1主程序流程图.......................................................................................... 25
4.2主程序流程图.......................................................................................... 26
第五章 系统仿真调试部分.................................................................................. 28
5.1 软件研发的背景................................................................................... 28
5.2 软件程序设计....................................................................................... 28
5.3 基于Proteus电路图绘制.................................................................... 29
第六章 结束语....................................................................................................... 31
参考文献................................................................................................................. 32
致谢.......................................................................................................................... 34
流量计量是科学计量的一个重要组成部分,它在各个领域中得到了广泛的应用,并推动和支持了国民经济的发展,在贸易结算、能源计量、过程控制、环境保护等方面都起到重要的作用。因此,研究和探索满足各种使用条件的流量计并提高测量准确度就成为流量计量工作者不懈的追求。
随着市场对气体流量测量仪的需求急剧增加,气体流量测量仪的智能化、快捷化、人性化越来越受人们的关注。因此,只依靠气体流量测量仪其自身的结构来提高产品功能是完全不够的,更是不现实的,新一代的我们需要不断加强对微控制技术的学习和探讨,给电子测量行业带来革命性的影响,而且要以一定的技术指标来考核目前的技术状况,用实验室各种高精度的仪器设备测试出数据,定量而又科学地判断电子测量仪器的技术状况,给予正确的评价。然而,气体流量测量仪表在使用过程中出现故障的几率是非常高的,液晶显示屏等部件一旦出现故障,就不能够及时准确地测量出真实的数据,从而给用户带来不必要的麻烦。作为二十一世纪的我们,对微电子行业有自己独特的见解和好奇心,更希望能够探索智能电子测量行业,为其尽一份自己的绵薄之力。
一直以来气体流量测量仪行业拥有悠久的历史,并且现如今蓬勃发展,气体流量检测技术是一种快捷技术,目前主要在检测探伤上使用,同时朝着更加智能、自动调节的方向不断革新。起初,由于各国对气体流量测量仪控制设备的需求极高,同时给予了很多优秀的设想和建议,而且研究出了很多至关重要的新技术。因为世界科学技术和人类文明的不断发展和创新,气体流量测量仪控制设备不管是在功能上还是在销量上都得到了前所未有的的发展和提高,逐渐变成当今社会人们必不可缺的日常工具,从而改善了人们的生活方式。
但是伴随着人们的生活条件和经济水平不断改善,市场对气体流量测量仪性能的需求也在急剧增加,特别是大中及沿海城市。气体流量测量仪控制系统在有很多优势的同时也存在不利的一面,由于控制策略的实际性存在很多问题,常常会出现控制失败的现象等。
现在我国的微电子技术已经得到了前所未有的进步,微处理器的智能化越来越好,性能也趋向完美,以目前的技术来达到对气体流量测量仪的控制是完全可以实现的,随着国外处理器开发性能上的提高,而且性价比很高,不需用花费很大的成本,在我们的消费范围内增强控制气体流量测量仪的智能化和准确度,这个是很重要的。随着电子技术的发展和微处理器的革新,电子产品越来越智能化,我们要逐步实现气体流量测量仪控制系统的智能化是当今社会的发展方向,引领气体流量测量仪新的航向。
气体流量测量仪是目前市场上至关重要的测量设备,准确性、快速性逐渐成为智能气体流量测量仪的显示要求,更要方便用户实时监控和实时测量,从而有效的将市场上比较落后的机械式测量装置,同时逐步成为气体流量测量仪行业的佼佼者。在此次智能气体流量测量仪设计开发工程中主要用编程为主进行软件开发,以嵌入式开发系统为核心,硬件电路主要采用数模转换器。但是由于传感器采集到信号后输出为模拟电压值,需要对其进行数模转换,转换成嵌入式开发系统能够识别的数字电压信好,然后对其进行进一步处理,并通过LCD显示屏将数据呈现出来,设计成本相对较低,并且可以满足实际的需求。该智能气体流量测量仪设计的优势主要体现在以下几点:1、满足对数据的实时测量存储;2、对上限值可进行修改或者重新设置;3、测量精度比较高;4、数据传输显示速率高,准确性高。
..........
需要完整版论文私信