题意:给你一些多边形的点,判断每个多边形和那些多边形相交,编号按照字典序输出
思路:枚举每个多边形的每条边看是否相交,这里的相交是包括端点的,关键是给你正方形不相邻两个点求另外两个点怎么求,长方形给你3个点求第四个点怎么求?
因为对角线的交点为两条对角线的中点,所以
x0 + x2 = x1 + x3
y0 + y2 = y1 + y3
可以证明分割的这几个小三角形是全等的所以有
x1 - x3 = y2 - y1
y1 - y3 = x2 - x0
根据这几个式子可以推出 另外两个点的坐标
剩下的就是枚举每两个多边形的每条边是否相交
就是输入输出格式要细心点
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; struct Point { double x,y; Point(double x = 0,double y = 0):x(x),y(y){} }; typedef Point Vector; Vector operator + (Vector a, Vector b) { return Vector(a.x+b.x,a.y+b.y) ;} Vector operator - (Vector a, Vector b) { return Vector(a.x-b.x,a.y-b.y) ;} Vector operator * (Vector a,double p) { return Vector(a.x*p,a.y*p) ;} Vector operator / (Vector a,double p) { return Vector(a.x/p,a.y/p) ;} double Dot(Vector a,Vector b) { return a.x*b.x + a.y*b.y ;} double Length(Vector a) { return sqrt(Dot(a,a)) ;} double Cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x ;} const double eps = 1e-8; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (Point a,Point b) { return dcmp(a.x-b.x) == 0&& dcmp(a.y-b.y) == 0; } bool operator < (Point a,Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool Onsegment(Point p,Point a,Point b) { return dcmp(Cross(b-a,p-a)) == 0 && dcmp(Dot(b-p,a-p)) < 0 || (p == a) || (p == b); } bool OnLine(Point p,Point a,Point b) { return fabs(Cross(p-a,a-b)) / Length(b-a); } bool Segmentsection(Point a,Point b,Point c,Point d) { double d1 = Cross(b-a,c-a),d2 = Cross(b-a,d-a),d3 = Cross(d-c,a-c),d4 = Cross(d-c,b-c); if(dcmp(d1)*dcmp(d2) < 0 && dcmp(d3)*dcmp(d4) < 0) return true; else if(dcmp(d1) == 0 && Onsegment(c,a,b) ) return true; else if(dcmp(d2) == 0 && Onsegment(d,a,b) ) return true; else if(dcmp(d3) == 0 && Onsegment(a,c,d) ) return true; else if(dcmp(d4) == 0 && Onsegment(b,c,d) ) return true; else return false; } Point Segment(Point p,Vector v,Point q,Vector w) { Vector u = p-q; double t = Cross(w,u) / Cross(v,w); return p + v*t; } double Max(double a,double b) { return a > b ? a : b; } struct Line { Point s,e; Line(Point s = 0,Point e = 0) :s(s),e(e){} }; struct polygon { Point p[30]; int num; }poly[50]; bool Ispoly(polygon a,polygon b) { if(a.num != 0 && b.num != 0) { for(int i = 0; i < a.num; i++) { for(int j = 0; j < b.num; j++) { if( Segmentsection(a.p[i],a.p[(i+1)%a.num],b.p[j],b.p[(j+1)%b.num]) ) return true; } } } return false; } int main() { char str[10],strr[20]; memset(poly,0,sizeof(poly)); while(scanf("%s",str) != EOF) { if(strcmp(str,".") == 0) { break; } if(strcmp(str,"-") == 0) { char c[30]; int k,j; for(int i = 0; i < 26; i++) { k = 0; for(j = 0; j < 26; j++) { if( i != j && Ispoly(poly[i],poly[j])) { c[k++] = j + 'A'; } } if(k == 0 && poly[i].num != 0) { printf("%c has no intersections\n",i+'A'); } else if(poly[i].num != 0) { printf("%c intersects with %c",i+'A',c[0]); if(k == 2) { printf(" and %c",c[1]); } else if(k > 2) { for(int m = 1; m < k-1; m++) { printf(", %c",c[m]); } printf(", and %c",c[k-1]); } printf("\n"); } } printf("\n"); memset(poly,0,sizeof(poly)); continue; } scanf("%s",strr); int temp = str[0]-'A'; double x,y; if(strcmp(strr,"square") == 0) { poly[temp].num = 4; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[0].x = x, poly[temp].p[0].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[2].x = x, poly[temp].p[2].y = y; poly[temp].p[1].x = (poly[temp].p[0].x+poly[temp].p[2].x +poly[temp].p[2].y-poly[temp].p[0].y)/2; poly[temp].p[1].y = (poly[temp].p[0].y+poly[temp].p[2].y+poly[temp].p[0].x-poly[temp].p[2].x)/2; poly[temp].p[3].x = (poly[temp].p[0].x+poly[temp].p[2].x +poly[temp].p[0].y-poly[temp].p[2].y)/2; poly[temp].p[3].y = (poly[temp].p[0].y+poly[temp].p[2].y+poly[temp].p[2].x-poly[temp].p[0].x)/2; } else if(strcmp(strr,"rectangle") == 0) { poly[temp].num = 4; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[0].x = x, poly[temp].p[0].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[1].x = x, poly[temp].p[1].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[2].x = x, poly[temp].p[2].y = y; poly[temp].p[3].x = (poly[temp].p[0].x + poly[temp].p[2].x - poly[temp].p[1].x); poly[temp].p[3].y = ( poly[temp].p[2].y - poly[temp].p[1].y + poly[temp].p[0].y); } else if(strcmp(strr,"line") == 0) { poly[temp].num = 2; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[0].x = x, poly[temp].p[0].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[1].x = x, poly[temp].p[1].y = y; } else if(strcmp(strr,"polygon") == 0) { int n; scanf("%d",&n); poly[temp].num = n; for(int i = 0; i < n; i++) { scanf(" (%lf,%lf)",&x,&y); poly[temp].p[i].x = x, poly[temp].p[i].y = y; } } else { poly[temp].num = 3; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[0].x = x, poly[temp].p[0].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[1].x = x, poly[temp].p[1].y = y; scanf(" (%lf,%lf)",&x,&y); poly[temp].p[2].x = x, poly[temp].p[2].y = y; } } return 0; }