- 可达性分析算法Test
ThetaarSofVenice
算法javajvm
可达性分析算法相对于引用计数算法而言,可达性分析算法同样具备实现简单和执行高效等特点,更重要的是,该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生,这个算法目前较为常用。Java语言选择使用可达性分析算法判断对象是否存活。这种类型的垃圾收集通常叫作追踪性垃圾收集(TracingGarbageCollection),它的基本流程如下。可达性分析算法是以GCRoot(根对象)(见
- Python 包管理新选择:全面了解 uv(附 Conda 对比)
茫茫人海一粒沙
pythonuvconda
在Python的世界里,我们常用pip安装依赖,用venv创建虚拟环境,还可能用pip-tools来生成锁文件。这些工具虽然灵活,但组合使用时也容易让人混乱。最近,一个名叫uv的新工具火了起来,目标是统一和简化整个Python包管理流程。uv是什么?uv是由Astral开发的一个超快的Python包管理器,用Rust编写。它旨在作为pip、pip-tools、virtualenv和python-b
- BP-Tools21.02下载 加解密利器 金融安全交易算法工具 PCI认证工具 金融和智能卡的数据加解密和数据转换工具
小黄人软件
金融安全
21.02版下载金融领域常用算法如AESRSADES都能计算,还能计算DUKPTAES/DES,以及TR31KBH的格式解析和数据包计算,另外还能提供EMVATRparser(ATR命令解析),HSM加密机指令组包,SimCard文件编辑和解析。
- Python爬虫实战:使用Scrapy+Selenium+Playwright高效爬取Stack Overflow问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫scrapy微信开发语言科技selenium
摘要本文将详细介绍如何使用Python生态中最先进的爬虫技术组合(Scrapy+Selenium+Playwright)来爬取StackOverflow的问答数据。我们将从基础爬虫原理讲起,逐步深入到分布式爬虫、反反爬策略、数据存储等高级话题,并提供完整的可运行代码示例。本文适合有一定Python基础,想要掌握专业级网络爬虫技术的开发者阅读。1.爬虫技术概述1.1为什么选择StackOverflo
- 【全网最快,不服来战,输了叫大哥】Ubuntu 22.04安装Docker
逆羽飘扬
Docker学习ubuntudockerlinux
文章目录Docker的安装快速绿色安装Docker正常安装Docker报错解决完全卸载Docker其他问题解决方法参考博客点此到文末惊喜↩︎Docker的安装特别鸣谢,这位大佬写的非常好:https://blog.csdn.net/weixin_42571882/article/details/134015815比我速度快、简单且稳定的,评论区给我你的博客,输了叫你大哥快速绿色安装Docker选择
- 《伴时匣》app开发技术分享--表单提交准备(4)
鸿蒙小林
鸿蒙端云一体化harmonyos
技术栈Appgalleryconnect开发准备上一节我们实现了用户登录功能,现在我们进入首页,可以开始准备着手发布我们的日期计划了,在这之前我们先实现信息表的创建。在首页实现一个标题栏,一个悬浮的按钮。功能分析我们的信息表要展示的内容很多,首先是我们的事件名称,目标日期选择,公历农历,正数倒数,倒数类目的选择,是否实现置顶效果,是否显示精确时间,事件颜色,事件图标,事件心情,事件天气,跟用户绑定
- MQTT 和 CoAP物联网通信协议之争:MQTT 与CoAP 深度对比分析
34号树洞
#MQTT专栏物联网传输层通信专栏物联网通讯协议MQTTCoAP
目录一、核心特性对比二、关键设计目标1.MQTT2.CoAP三、优缺点分析MQTT的优缺点CoAP的优缺点四、典型应用场景对比五、技术细节对比1.消息传输流程2.安全性实现3.资源发现机制六、选择建议1.优先选择MQTT的场景2.优先选择CoAP的场景3.混合使用策略七、未来趋势总结在物联网(IoT)领域,选择合适的通信协议对于设备性能、电池寿命、网络效率和应用可靠性至关重要。MQTT(Messa
- 用万用表测量(TO-220)NMOS管的好坏
MingYue_SSS
元器件好坏测量嵌入式硬件经验分享笔记学习
第一步:用镊子或表笔短接MOS管的三个引脚,进行放电。第二步:万用表选择二极管档位。短接表笔,发出蜂鸣声说明万用表没问题。第三步:测量MOS管体二极管的好坏。用万用表测量2脚和3脚,正向导通,反向截至表示MOS管为好的。反之则是坏的。红表笔(+)测3脚源极S,黑表笔(-)测2脚漏极D,正常有一个导通压降,万用表数值在0.4V—0.9V左右。红表笔(+)测2脚漏极D,黑表笔(-)测3脚源极S,正常为
- 使用Picgo+Cloudflare R2构建图床
Chrislime
云计算网络网络安全缓存
R2是Cloudflare推出的非结构性Objectstorage(对象存储)服务。本文将介绍我推荐R2的原因以及与Picgo联动的使用方式。为什么选择R2正如我在博客中多次提到,Cloudflare是一家服务范围遍及全球的网络资源供应商。因此对象存储自然也会成为其主打服务之一选择R2的理由有以下:10GB免费空间无流量费免费CDN节点及DDos防护服务国际化兼容S3无政治原因的审查得益于Clou
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- 【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记人工智能
【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?文章目录【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?一、什么是K折交叉验证?✅目的:二、K折交叉验证的发展背景三、K折交叉验证的步骤详解步骤如下:数学
- 用 Python 打造立体数据世界:3D 堆叠条形图绘制全解析
Code_Verse
python科研绘图
在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果——它突破了二维平面的限制,用立体空间展示多维度数据关系,让复杂的数据层级一目了然。今天我们要解锁的「3D堆叠条形图」,就是一种能同时呈现类别、子类别、数值大小的强大可视化工具,特别适合展示具有分层结构的数据。无论是商业报表中的多维度业绩分析,还是科研数据中的多指标对比,它都能让你的数据呈现瞬间高级起来~为什么选择3D堆叠条形图?先聊聊这种图表
- 【高频考点精讲】手写下拉选择组件:从点击展开到搜索过滤,实现select的增强版
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
手写下拉选择组件:从点击展开到搜索过滤,实现select的增强版作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊如何手写一个功能完善的下拉选择组件。相信不少前端er都用过ElementUI或者AntDesign的Select组件,但你知道它们底层是怎么实现的吗?老李今天就带大家从零开始,实现一个支持点击展开、搜索过滤的
- 数字人多模态交互中的语义理解技术:让虚拟角色真正“理解”用户
CarlowZJ
数字人python
目录前言一、语义理解技术的概念(一)语义理解的定义(二)语义理解的关键技术二、语义理解的代码示例(一)安装依赖(二)语义理解模型(三)结合情感分析(四)完整的多模态语义理解系统三、应用场景(一)虚拟客服(二)教育辅导(三)虚拟直播(四)智能助手四、注意事项(一)上下文管理(二)情感分析(三)多模态融合(四)模型选择(五)性能优化(六)安全性和隐私保护五、总结前言在数字人多模态交互中,语义理解是实现
- 前端react面试题之实现网页多选搜索框
烟雨-yaya
前端react.js前端框架
需求提供100位用户信息。其用户信息含:{id:1,age:42,name:'张小强',address:"北京"},;要求1:需要设计可以多选择来筛选得到指点条件用户表,可以选择=>各阶段年龄端或者不同地区的。选择的条件,可以清空;要求2:选择的条件,需要在页面路由上呈现;方便其他用户copy,可以查询到一样的结果;实例网页实现实现需要提前下载相关依赖哈,nanoidimportReact,{Fr
- 安装wordpress报错(完美解决)
光头程序员em
wordpress报错
#错误1#YourserverisrunningPHPversion7.2.1butWordPress6.7.1requiresatleast7.2.24.这是因为wordpress6.7.1需要7.2.24及以上版本,解决方法就是下载低版本wordpress或者升级高版本的php运行环境#错误2#不能选择数据库可以连接到数据库服务器(这说明您的用户名和密码正确),但是不能选择wordpress数
- 技术开发全流程管理:涵盖天线系统的仿真建模(HFSS/CST等)、原型设计、调试优化(网络分析仪/暗室测试)到量产导入(LDS工艺识别),需主导技术文档编写(设计规范/测试报告)。
百态老人
网络设计规范
以下是针对天线系统技术开发全流程管理的完整解析,涵盖仿真建模、原型设计、调试优化、量产导入及技术文档编写五大环节,结合行业实践与资料核心信息进行系统阐述:一、仿真建模(HFSS/CST)1.软件选择与算法差异HFSS:基于有限元法(FEM),擅长电小尺寸、窄带天线设计(如微带天线、滤波电路),可精确计算辐射方向图、增益、S参数等。其自适应网格技术确保高精度,但计算资源消耗大,不适于电大尺寸模型。C
- Joda-Time 日期时间库介绍
hweiyu00
技术栈杂谈开发语言java
一、Joda-Time是什么?Joda-Time是由StephenColebourne开发的开源日期时间库,用于替代Java标准库中的java.util.Date和java.util.Calendar。它因设计更合理、使用更便捷,曾是Java开发中处理日期时间的主流选择,尤其在Java8推出新的日期时间API(java.time包)之前被广泛使用。二、Joda-Time解决了Java标准库的哪些问
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 插件鸿蒙化flutter_native_contact_picker_plus联系人选择器的跨平台适配实践【上篇】
harmonyos
Flutter插件鸿蒙化,flutter_native_contact_picker_plus联系人选择器的跨平台适配实践本项目作者:坚果适配仓库地址作者仓库:https://pub.dev/packages/flutter_native_contact_picker_plus在数字化浪潮的推动下,跨平台开发框架如Flutter凭借其高效、便捷的特性,成为了开发者们的宠儿。而鸿蒙系统的崛起,更是为
- opencv —— floodFill 漫水填充法 实现证件照换背景
老干妈就泡面
opencv人工智能计算机视觉
漫水填充:floodFill函数简单来说,漫水填充就是自动选中与种子像素相连的区域,利用指定颜色进行区域颜色填充。Windows画图工具中的油漆桶功能和Photoshop的魔法棒选择工具,都是漫水填充的改进和延伸。//第一个版本intfloodFill(InputOutputArrayimage,PointseedPoint,ScalarnewVal,Rect*rect=0,ScalarloDif
- 小柿子影视安卓版,跨平台开发的技术挑战与解决方案
2501_92530989
音视频百度经验分享其他
在移动应用开发的浪潮中,视频类App因其对性能、用户体验、跨平台兼容性要求高,成为开发者面临的重点技术难题之一。本文将结合实际案例,分析一个典型的视频类项目“小柿子”的跨平台开发过程中的关键技术点。一、背景介绍“小柿子影视”是一款轻量级视频播放App,专注于提供清爽的界面和流畅的播放体验。该项目同时支持小柿子安卓与小柿子iOS两个平台,目标用户覆盖广泛。因此,跨平台开发策略、播放器内核选择、缓存机
- 100G QSFP28双纤单波光模块的高性价比解决方案
易天ETU
光模块信息与通信网络5G数据中心互联万兆光模块单波100G光模块QSFP28光模块
我们都知道传统的100G光模块采用的都是4路25G的光学通道并行或波分复用进行传输的,目前市场上主流的光模块主要是100GSR4/CWDM4/PSM4/LR4/ZR4等。而我们今天为大家介绍的100G单波光模块,使用的是单波长100GPAM4调制技术,可以更好的降低生产成本和获得更高的传输效率。一、传统100G光模块和100G单波光模块的区别对比传统的100G光模块采用的是4x25GNRZ技术。使
- 基于 Kintex UltraScale 系列 2 路 QSFP+40G 光纤 PCIe 数据传输卡 / 光纤适配器(5GByte/s 带宽KU060光纤 PCIe 数据传输卡)
F_white
数据中心视频与图像采集处理机器视觉
PCIE732是一款基于PCIE总线架构的高性能数据传输卡,板卡具有1个PCIex8主机接口、2个QSFP+40G光纤接口,可以实现2路QSFP+40G光纤的数据实时采集、传输。板卡采用Xilinx的高性能KintexUltraScale系列FPGA作为实时处理器,板载2组独立的72位DDR4SDRAM大容量缓存。板卡具有1个RJ45千兆以太网口以及若干IO信号。一般应用于基于服务器的雷
- SD-WAN优化云应用与多云架构访问的关键策略
1.SD-WAN如何优化企业对公有云和SaaS应用的访问?1.1智能流量优化SD-WAN通过应用识别技术,可以根据不同的业务应用流量需求,动态分配网络资源。例如,SD-WAN能够优先为钉钉、企业微信、金山文档等关键SaaS应用分配低延迟、高带宽的链路,确保这些应用的高效运行。动态路径选择:SD-WAN可实时监测网络性能(如延迟、抖动、丢包率),并基于网络状态动态选择访问云服务(如阿里云、腾讯云、华
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- Git安装全攻略:避坑指南与最佳实践
编程在手天下我有
git
1、系统环境检查确认操作系统版本(Windows/macOS/Linux)及位数(32/64位)检查是否已安装旧版Git,避免版本冲突确保系统环境变量配置权限2、下载安装包注意事项官方下载地址推荐(避免第三方镜像源)选择与系统匹配的安装包类型(如Windows选.exe,macOS选.dmg)验证安装包完整性(校验SHA值或数字签名)3、安装过程中的关键选项路径选择:避免中文或特殊字符路径组件选择
- matplotlib 绘制极坐标图
扶子
pythonmatplotlib绘图代码matplotlibpython经验分享极坐标图
1、功能介绍:使用了matplotlib库来创建一个极坐标图2、代码部分:importmatplotlib.pyplotaspltimportnumpyasnp#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#选择黑体字体,支持中文plt.rcParams['axes.unicode_minus']=False#显示负号theta=np.linsp
- Cesium快速入门到精通系列教程十一:Cesium1.74中高性能渲染上万Polyline
duansamve
cesiumcesium
在Cesium1.74中,高性能渲染大量线条的核心在于PrimitiveAPI的批量处理、着色器优化和数据合并策略。以下是结合多个技术方案的最佳实践和完整代码实现:一、高性能渲染方案选择PrimitiveAPI批量渲染优势:直接操作几何体实例,减少Entity的开销,支持合并几何数据降低DrawCall。关键类:PolylineGeometry+GeometryInstance+Primitive
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号