- YOLOv8改进 更换轻量级网络结构
学yolo的小白
UpgradeYOLOv8进阶YOLO目标检测深度学习
一、GhostNet论文论文地址:1911.11907.pdf(arxiv.org)二、GhostNet结构GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型
- 图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解
牙牙要健康
深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解前言EfficientNet_V2讲解自适应正则化的渐进学习(ProgressiveLearningwithadaptiveRegularization)EfficientNet_V2的模
- 3.2 ThunderNet思考
深度学习模型优化
1设计思想ThunderNet的优化目标是二阶段检测器中计算开销大的结构。在backbone部分,设计了轻量级网络SNet;在detection部分,借鉴Light-HeadR-CNN的思路,并进一步压缩RPN和R-CNN子网络。为了避免性能的衰退,设计了2个高效的结构CEM和SAM来改善性能。2网络架构图1ThunderNet网络架构ThunderNet的输入是分辨率的图像。Backbone部分
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解前言EfficientNet_V1讲解问题辨析(ProblemFormulation)缩放尺寸(ScalingDimensions)复合缩放(CompoundScaling)Efficie
- Coap在Andorid中的简单应用
秦汉春秋
AndroidJavacaliforniumcoap广播
Andlink设备使用了Coap来进行配网和一定的数据交互,因此记录一下。Coap协议Coap可以简单理解为是为了在物联网场景下实现web功能而产生的一种轻量级网络协议;主要特点有使用UDP方式传输以及基于REST等。coap协议的服务地址和http的url类似:coap://192.168.52.101:5683/qlink/request也同样接收POST/GET/PUT/DELETE等请求;
- 暗光增强——Zero-DCE网络推理测试
佐咖
暗光增强增强现实
目录一、Zero-DCE方法1.1网络优点1.2网络适用场景1.3网络不适用场景二、源码包三、测试四、测试结果五、推理速度六、总结一、Zero-DCE方法Zero-DCE(Zero-ReferenceDeepCurveEstimation)是一种用于低光照增强的网络。1.1网络优点无需参考数据:Zero-DCE不需要任何配对或非配对的数据进行训练,这避免了过拟合的风险。轻量级网络:Zero-DCE
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解前言ShuffleNet_V2讲解四条实用指导思想G1:相等的通道宽度可以降低存储访问成本G2:大量的分组卷积数量会增加存储访问G3:网络碎片化会降低并行度G4:元素级操作是不可忽略的Shuffl
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解前言ShuffleNet_V1讲解groupconvolution(分组卷积)ChannelShuffle(通道混洗)ShuffleNetUint(ShuffleNet基础单元)ShuffleNe
- 【目标检测实验系列】YOLOv5创新点改进:融合高效轻量级网络结构GSConv,减轻模型复杂度的同时保持检测精度!(内含源代码,超详细改进代码流程)
弗兰随风小欢
目标检测实验系列目标检测YOLO人工智能YOLOv5GSConvSCI论文计算机视觉
自我介绍:本人硕士期间全程放养,目前成果:一篇北大核心CSCD录用,两篇中科院三区已见刊,一篇中科院三区在投。如何找创新点,如何放养过程厚积薄发,如何写中英论文,找期刊等等。本人后续会以自己实战经验详细写出来,还请大家能够点个关注和赞,收藏一下,谢谢大家1.文章主要内容本篇博客主要涉及将GSConv融合到YOLOv5模型中。通过GSConv替换普通的卷积结构,减轻模型复杂度的同时保持检测精度。(通
- CoordAttention解读
周先森爱吃素
论文解读CoordAttention
简介在轻量级网络上的研究表明,通道注意力会给模型带来比较显著的性能提升,但是通道注意力通常会忽略对生成空间选择性注意力图非常重要的位置信息。因此,新加坡国立大学的QibinHou等人提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为coordinateattention(简称CoordAttention,下文也称CA),该论文已被CVPR2021收录。不同于通道
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解前言MobleNet_V3讲解SE模块(SqueezeExcitation)重新设计激活函数反向残差结构(InvertedResiduals)重新设计耗时层结构MobleNet_V3模型结构Mob
- 图像识别经典轻量级网络模型总结梳理、原理解析与优劣对比分析
Together_CZ
网络深度学习人工智能
在前面的很多博文中,我们不止一次提到过,在实际业务项目开发过程中,我们会经常使用到轻量级的网络模型,本文主要是总结梳理前面经常使用到的一些轻量级的图像识别模型。【MobileNetv1】MobileNetv1是一种轻量级的卷积神经网络(CNN)架构,由Google团队在2017年提出。它的设计初衷是为了在移动设备上实现高性能的图像识别和物体检测任务,同时降低模型的计算量和内存占用。MobileNe
- 轻量级网络结构的目标检测算法——Yolov8介绍
LittroInno
目标跟踪人工智能计算机视觉yolov8
1.Yolov8算法概述Yolov8是一种目标检测算法,它通过独特的双路径预测和紧密的连接的卷积网络进行目标检测。该算法采用了轻量级网络结构,同时保持了较高的性能,因此具有高效的特点。此外,Yolov8还采用了级联和金字塔的思想,使算法能够处理不同大小的目标。在Yolov8中,目标检测任务被分解为两个独立的子任务,即分类和定位。每个子任务都有自己的网络路径,这使得算法能够更好地处理不同大小的目标。
- 阅读笔记 | Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI
一条独龙
笔记笔记edge人工智能
内容概要这篇是一篇综述性文章,主要关于云计算、边缘计算以及边云协同计算在人工智能方面的进展。论文的主要内容如下:云计算AI:讨论了用于云计算的CPU、GPU、TPU和DPU等硬件。介绍了计算机视觉、自然语言处理和网络服务等领域基于云计算的AI模型。边缘计算AI:概述了用于边缘计算的VPU、边缘TPU、移动GPU和神经处理单元等硬件。探讨了轻量级网络架构设计、模型压缩等技术来满足边缘计算的限制。边缘
- Android使用Okhttp进行数据交互
全栈开发Dream
前言在遇到Android数据交互的情况时,思考过采取什么方式,在经过一段时间的学习,最终采取Okhttp这一个轻量级网络框架。1、工具类实现publicclassOkHttpUtil{publicfinalstaticStringTAG="OkHttpUtil";publicfinalstaticintCONNECT_TIMEOUT=60;publicfinalstaticintREAD_TIME
- 轻量级网络之mobilenet v1
GEETEST极验
论文分享萝卜兔编辑整理卷积神经网络广泛应用在各种任务,比如图像分类、目标检测等,性能也越来越好,但都趋向于使用更深更复杂的结构来提升性能而不太关注计算代价,使得将这些模型直接部署在移动设备困难重重。本文针对传统卷积计算量大的缺点,对传统卷积模块进行了改进,该结构更高效,为在移动设备上部署带来了可能。RooflineModel在介绍具体的原理之前,我们先来与模型计算性能相关的几个概念:(1)计算量:
- CGNet: A Light-weight Context Guided Network for Semantic Segmentation
顾北向南
论文地址:https://arxiv.org/pdf/1811.08201代码地址:https://github.com/wutianyiRosun/CGNet1.摘要本文提出了一种新颖的上下文引导网络(CGNet),它是一种用于移动设备语义分割的轻量级网络。我们首先提出了ContextGuided(CG)块,它学习了局部特征和周围环境的联合特征,并进一步改善了与全局背景的联合特征。基于CG块,我
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解
牙牙要健康
图像分类轻量级网络深度学习深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解前言MobleNet_V2讲解反向残差结构(InvertedResiduals)兴趣流形(Manifoldofinterest)线性瓶颈层(LinearBottlenecks)MobleNet_V
- 图像分类(七) 全面解读复现ShuffleNetV1-V2
小酒馆燃着灯
图像分类机器学习深度学习分类人工智能python机器学习深度学习算法
ShuffleNetV1前言前面我们学了MobileNetV1-3,从这篇开始我们学习ShuffleNet系列。ShuffleNet是Face++(旷视)在2017年发布的一个高效率可以运行在手机等移动设备的网络结构,论文发表在CVRP2018上。这个新的轻量级网络使用了两个新的操作:pointwisegroupconvolution和channelshuffle,在保持精度的同时大大降低计算成本
- 轻量级网络--MobileNet V1、V2、V3(学习记录;完善ing)
Colinnnn2
论文阅读网络深度学习神经网络
MobileNet目录前言研究背景研究成果论文结构摘要论文精读1.MobileNetArchitecture1.1卷积块特点1.2深度可分离卷积1.3两者对比2.MobileNet超参数2.1宽度超参数2.2分辨率超参数3.MobileNetV23.1线性瓶颈层(LinearBottleneck)3.2逆残差结构(Invertedresiduals)3.3MobileNetV2网络结构3.4ReL
- 聊聊神经网络结构以及计算量和内存使用
Henry_zhangs
关于深度学习的smartpower神经网络人工智能深度学习
目录1.前言2.torchsummary3.torchstat3.1Conv层计算FLOPs和MAC3.2ReLU计算FLOPs和MAC3.3MaxPool计算FLOPs和MAC3.4fc计算FLOPs和MAC4.summary1.前言最近在看轻量级网络的paper,因此来简单聊聊神经网络计算量和使用内存的情况这里只计算两个参数FLOPs和MACFLOPs是神经网络执行一次前向传播的计算量,也就是
- 深度学习之基于YoloV5-Deepsort人物识别与追踪系统
雅致教育
深度学习python计算机毕业设计深度学习YOLO人工智能
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 YoloV5-Deepsort是一种基于深度学习的人物识别与追踪系统,具有较高的准确率和实时性能。YoloV5是一种目标检测算法,可以快速识别图像或视频中的不同目标。它采用了轻量级网络结构,并通过从预训练模型中进行微调来提高检测精度。相比于之前的版本,YoloV5在保持准确
- MobileNetV3
nice-wyh
人工智能机器学习
相对重量级网络而言,轻量级网络的特点是参数少、计算量小、推理时间短。更适用于存储空间和功耗受限的场景,例如移动端嵌入式设备等边缘计算设备。因此轻量级网络受到了广泛的关注,其中MobileNet可谓是其中的佼佼者。MobileNetV3经过了V1和V2前两代的积累,性能和速度都表现优异,MobileNetV3参数是由NAS(networkarchitecturesearch)搜索获取的,又继承的V1
- opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox
aworkholic
OpenCVopencv实例源码演示opencvdnn目标检测yolox
文章目录0、前言1、网络介绍1.1、输入1.2、Backbone主干网络1.3、Neck1.4、Prediction预测输出1.4.1、DecoupledHead解耦头1.4.2、Anchor-Free1.4.3、标签分配1.4.4、Loss计算1.5、Yolox-s、l、m、x系列1.6、轻量级网络研究1.6.1、轻量级网络1.6.2、数据增强的优缺点1.7、Yolox的实现成果1.7.1、精度
- SqueezeNet 一维,二维网络复现 pytorch 小白易懂版
浩浩的科研笔记
Pytorch深度学习一维网络网络pytorch人工智能
SqueezeNet时隔一年我又开始复现神经网络的经典模型,这次主要复的是轻量级网络全家桶,轻量级神经网络旨在使用更小的参数量,无限的接近大模型的准确率,降低处理时间和运算量,这次要复现的是轻量级网络的非常经典的一个模型SqueezeNet,它由美国加州大学伯克利分校的研究团队开发,并于2016年发布。文章链接:https://arxiv.org/pdf/1602.07360.pdf?source
- iOS AFNetworking 取消网络请求
忆江南的博客
IOS开发学习点滴AFNetworking
AFNetworking是我们常用的轻量级网络请求,文章的前提是你已经对AFNetworking有了基本的掌握。不太了解的,请链接iOS使用AFNetworking。一:唠唠叨叨。AFNetworking是建立在NSURLConnection和NSOperation等类库的基础之上的,取消的网络的请求的操作也就变得很简单。但AFNetworking又没有直接的给出我们取消的方式,这就需要我们添加。
- CV Code | 本周新出计算机视觉开源代码汇总(语义分割、目标检测、超分辨率、网络结构设计、训练策略等)...
我爱计算机视觉
点击我爱计算机视觉标星,更快获取CVML新技术CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像增广、医学图像分割、图像恢复、目标检测、语义分割、超分辨率、显著目标检测、轻量级网络结构设计、网络规范化、标注工具等,其中有多篇来自CVPR2019与ICML2019的论文代码。希望对你有帮助~ICML2019mixup图像增广,噪声标签建模改进网络训练Unsupervisedlabelnoi
- 轻量级网络IP扫描器WatchYourLAN
杨浦老苏
群晖docker网络
什么是WatchYourLAN?WatchYourLAN是一款带有WebGUI的轻量级网络IP扫描器。支持使用不同的主题和色彩模式进行个性化设置。准备工作扫描网络,首先要找到对应的网络接口,一般常见的包括eth0、lo、docker0等,可以在SSH客户端命令行,执行下面的命令#获取网络接口ifconfig-a但是目前WatchYourLAN还不支持docker0,因为arp-scan无法正确使用
- 使用 PyTorch 的计算机视觉简介 (6/6)
无水先生
深度学习深度学习和图像处理人工智能pytorch计算机视觉人工智能
一、说明本文主要介绍CNN中在pytorch的实现,其中MobileNet网络,数据集来源,以及训练过程,模型生成和存储,模型调入等。二、轻量级网络和移动网络我们已经看到,复杂的网络需要大量的计算资源,如GPU,用于训练和快速推理。然而,事实证明,在大多数情况下,参数数量明显较少的模型仍然可以被训练为表现得相当好。换句话说,模型复杂性的增加通常会导致模型性能的小幅(非成比例)增加。我们在模块开始时
- 基于轻量级ShuffleNetv2+YOLOv5的DIC-C2DH-HeLa细胞检测识别分析系统
Together_CZ
深度学习机器学习人工智能深度学习
ShuffleNetv2可以说是目前轻量级网络模型中的翘楚,将ShuffleNetv2于yolov5整合开发可以使得模型更加轻量化,在提升模型速度的同时保证有效的精度。本文的主要工作就是将ShuffleNetv2整合进yolov5中来开发构建细胞检测模型,首先看下效果图:这里是基于yolov5s进行改进融合的,改进后的yaml文件如下所示:#parametersnc:1depth_multiple
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出