RecyclerView的复用机制
概述
RecyclerView是Android业务开发非常常用的组件。我们知道它有复用,并且设计优雅。可能看过源码的同学还知道,它有几层复用。
但看网上的博客会发现,大多只是照着源码看一遍,并不会仔细地分析和推敲,RecyclerView为什么要设计这一层缓存,每一层缓存在什么情景下使用,以及每一层缓存的设置,对RecyclerView运行真正的影响。
所以,笔者试图通过本文,讲清楚以下几个问题:
- RecyclerView 缓存原理
- RecyclerView 每层缓存的作用及参数影响
- 我们应该如何使用 RecyclerView
RecyclerView的缓存原理
RecyclerView的复用启动,取决于LayoutManager
。不同的LayoutManager
在onLayoutChildren
中有不同的实现,但它们都一定会调用一个方法。那就是getViewForPosition
,所以,我们就从getViewForPosition
开始讲起。
/**
* Obtain a view initialized for the given position.
*
* This method should be used by {@link LayoutManager} implementations to obtain
* views to represent data from an {@link Adapter}.
*
* The Recycler may reuse a scrap or detached view from a shared pool if one is
* available for the correct view type. If the adapter has not indicated that the
* data at the given position has changed, the Recycler will attempt to hand back
* a scrap view that was previously initialized for that data without rebinding.
*
* @param position Position to obtain a view for
* @return A view representing the data at position
from adapter
*/
@NonNull
public View getViewForPosition(int position) {
return getViewForPosition(position, false);
}
View getViewForPosition(int position, boolean dryRun) {
return tryGetViewHolderForPositionByDeadline(position, dryRun, FOREVER_NS).itemView;
}
这个方法就是根据position去返回View的,根据不同情况,可能从share pool里面取,可能从scrap view中取,总而言之,就是尽量低成本地去获取一个可用的View。
mAttachedScrap & mChangedScrap
ViewHolder tryGetViewHolderForPositionByDeadline(int position,
boolean dryRun, long deadlineNs) {
...
boolean fromScrapOrHiddenOrCache = false;
ViewHolder holder = null;
// 0) If there is a changed scrap, try to find from there
if (mState.isPreLayout()) {
holder = getChangedScrapViewForPosition(position);
fromScrapOrHiddenOrCache = holder != null;
}
...
这一层的代码很简单,就是从mChangedScrap
中取ViewHolder。首先我们要明白,mChangedScrap
里面放的是什么。
我们可以注意到这一层缓存的判断条件,isPrelayout。只有当我们需要用动画改变屏幕上已有ViewHolder时,会通过这个条件。并且此时在真正发生改变之前。
mChangedScrap 表示的是数据已经改变的但还在屏幕中的ViewHolder列表。所以在改动之前,我们会从中获取ViewHolder。
ViewHolder tryGetViewHolderForPositionByDeadline(int position,
boolean dryRun, long deadlineNs) {
boolean fromScrapOrHiddenOrCache = false;
ViewHolder holder = null;
...
// 1) Find by position from scrap/hidden list/cache
if (holder == null) {
holder = getScrapOrHiddenOrCachedHolderForPosition(position, dryRun);
if (holder != null) {
if (!validateViewHolderForOffsetPosition(holder)) {
// recycle holder (and unscrap if relevant) since it can't be used
if (!dryRun) {
// we would like to recycle this but need to make sure it is not used by
// animation logic etc.
holder.addFlags(ViewHolder.FLAG_INVALID);
if (holder.isScrap()) {
removeDetachedView(holder.itemView, false);
holder.unScrap();
} else if (holder.wasReturnedFromScrap()) {
holder.clearReturnedFromScrapFlag();
}
recycleViewHolderInternal(holder);
}
holder = null;
} else {
fromScrapOrHiddenOrCache = true;
}
}
}
...
我们可以看到这个方法中,我们会从mAttachedScrap
寻找合适的ViewHolder。
mAttachedScrap 表示屏幕内未与RecyclerView分离的ViewHolder列表。值得注意的是mAttachedScrap
是不限制大小的。想一想也很容易明白,屏幕中显示多少ViewHolder,是无法确定的。并且ViewHolder既然都已经显示了,mAttachedScrap
也不会造成额外的内存占用。
通常我们把mChangedScrap
和mAttachedScrap
称为RecyclerView的第一级缓存,它们的共同特点就是,只缓存屏幕上的View,且没有大小限制。
mCachedViews
mCachedViews
是RecyclerView第二层缓存。
当列表滑动出了屏幕时,ViewHolder会被缓存在 mCachedViews ,其大小由mViewCacheMax决定,默认DEFAULT_CACHE_SIZE为2,可通过Recyclerview.setItemViewCacheSize()动态设置。
我们来看一下从mCachedViews
中获取ViewHolder的代码:
// Search in our first-level recycled view cache.
final int cacheSize = mCachedViews.size();
for (int i = 0; i < cacheSize; i++) {
final ViewHolder holder = mCachedViews.get(i);
// invalid view holders may be in cache if adapter has stable ids as they can be
// retrieved via getScrapOrCachedViewForId
if (!holder.isInvalid() && holder.getLayoutPosition() == position) {
if (!dryRun) {
mCachedViews.remove(i);
}
if (DEBUG) {
Log.d(TAG, "getScrapOrHiddenOrCachedHolderForPosition(" + position
+ ") found match in cache: " + holder);
}
return holder;
}
}
return null;
值得注意的是,holder.getLayoutPosition() == position
,所以我们在mCachedViews
中存的ViewHolder,虽然是屏幕外的,但只能是对应position的。也就是说,只能是RecyclerView的ViewHolder被滑出屏幕后,再滑回来显示的情景。
也不难看出,从mCachedViews
中,我们取得的ViewHolder是不需要重新绑定数据的。
那么,我们的ViewHolder是何时被加入mCachedViews
中的呢?
if (forceRecycle || holder.isRecyclable()) {
if (mViewCacheMax > 0
&& !holder.hasAnyOfTheFlags(ViewHolder.FLAG_INVALID
| ViewHolder.FLAG_REMOVED
| ViewHolder.FLAG_UPDATE
| ViewHolder.FLAG_ADAPTER_POSITION_UNKNOWN)) {
// Retire oldest cached view
int cachedViewSize = mCachedViews.size();
if (cachedViewSize >= mViewCacheMax && cachedViewSize > 0) {
recycleCachedViewAt(0);
cachedViewSize--;
}
int targetCacheIndex = cachedViewSize;
if (ALLOW_THREAD_GAP_WORK
&& cachedViewSize > 0
&& !mPrefetchRegistry.lastPrefetchIncludedPosition(holder.mPosition)) {
// when adding the view, skip past most recently prefetched views
int cacheIndex = cachedViewSize - 1;
while (cacheIndex >= 0) {
int cachedPos = mCachedViews.get(cacheIndex).mPosition;
if (!mPrefetchRegistry.lastPrefetchIncludedPosition(cachedPos)) {
break;
}
cacheIndex--;
}
targetCacheIndex = cacheIndex + 1;
}
mCachedViews.add(targetCacheIndex, holder);
cached = true;
}
if (!cached) {
addViewHolderToRecycledViewPool(holder, true);
recycled = true;
}
}
很容易看出,当我们将ViewHolder滑出屏幕时,我们会尝试回收ViewHolder,将其放入mCachedViews
中。如果mCachedViews
已满,我们会将其中的第0个拿出来,放到mRecyclerPool
中。
mRecyclerPool
与mCachedViews
最大的不同是,从mCachedViews
中取出的ViewHolder是不需要重新bind数据的。
我们可以通过以下方法来设置mCacheViews
的最大值。
/**
* Set the maximum number of detached, valid views we should retain for later use.
*
* @param viewCount Number of views to keep before sending views to the shared pool
*/
public void setViewCacheSize(int viewCount) {
mRequestedCacheMax = viewCount;
updateViewCacheSize();
}
很明显,这是一个空间换时间的设置项。我们增大mRequestedCacheMax,可以在展示已经展示过的ViewHolder时,减少bind的次数,但需要缓存更多的ViewHolder。
mViewCacheExtension
mViewCacheExtension
是RecyclerView的第三层缓存。当我们在mAttachedScrap & mChangedScrap
和mCachedViews
中均未获得ViewHolder时,我们会尝试从mViewCacheExtension
中获取View并创建ViewHolder。
if (holder == null && mViewCacheExtension != null) {
// We are NOT sending the offsetPosition because LayoutManager does not
// know it.
final View view = mViewCacheExtension
.getViewForPositionAndType(this, position, type);
if (view != null) {
holder = getChildViewHolder(view);
if (holder == null) {
throw new IllegalArgumentException("getViewForPositionAndType returned"
+ " a view which does not have a ViewHolder"
+ exceptionLabel());
} else if (holder.shouldIgnore()) {
throw new IllegalArgumentException("getViewForPositionAndType returned"
+ " a view that is ignored. You must call stopIgnoring before"
+ " returning this view." + exceptionLabel());
}
}
}
我们可以看一下ViewCacheExtension
的定义:
public abstract static class ViewCacheExtension {
/**
* Returns a View that can be binded to the given Adapter position.
*
* This method should not create a new View. Instead, it is expected to return
* an already created View that can be re-used for the given type and position.
* If the View is marked as ignored, it should first call
* {@link LayoutManager#stopIgnoringView(View)} before returning the View.
*
* RecyclerView will re-bind the returned View to the position if necessary.
*
* @param recycler The Recycler that can be used to bind the View
* @param position The adapter position
* @param type The type of the View, defined by adapter
* @return A View that is bound to the given position or NULL if there is no View to re-use
* @see LayoutManager#ignoreView(View)
*/
@Nullable
public abstract View getViewForPositionAndType(@NonNull Recycler recycler, int position,
int type);
}
这一层看起来很简单,就是RecyclerView为我们开发者在mCachedViews
和RecycledViewPool
中加了一层缓存。让我们可以通过position和type返回一个View。然后RecyclerView帮我们找到View对应的ViewHolder。这一层缓存的实现完全可以靠开发者的想象。
值得注意的是,这一层如果能成功获得ViewHolder,也是不会绑定数据的。所以这一次缓存,通常也用来获取不可变的ViewHolder。
RecycledViewPool
/**
* RecycledViewPool lets you share Views between multiple RecyclerViews.
*
* If you want to recycle views across RecyclerViews, create an instance of RecycledViewPool
* and use {@link RecyclerView#setRecycledViewPool(RecycledViewPool)}.
*
* RecyclerView automatically creates a pool for itself if you don't provide one.
*/
public static class RecycledViewPool {
private static final int DEFAULT_MAX_SCRAP = 5;
/**
* Tracks both pooled holders, as well as create/bind timing metadata for the given type.
*
* Note that this tracks running averages of create/bind time across all RecyclerViews
* (and, indirectly, Adapters) that use this pool.
*
* 1) This enables us to track average create and bind times across multiple adapters. Even
* though create (and especially bind) may behave differently for different Adapter
* subclasses, sharing the pool is a strong signal that they'll perform similarly, per type.
*
* 2) If {@link #willBindInTime(int, long, long)} returns false for one view, it will return
* false for all other views of its type for the same deadline. This prevents items
* constructed by {@link GapWorker} prefetch from being bound to a lower priority prefetch.
*/
static class ScrapData {
final ArrayList mScrapHeap = new ArrayList<>();
int mMaxScrap = DEFAULT_MAX_SCRAP;
long mCreateRunningAverageNs = 0;
long mBindRunningAverageNs = 0;
}
SparseArray mScrap = new SparseArray<>();
RecycledViewPool
的结构非常清晰:
-
SparseArray
中存放在viewType对应的mScrap ScrapData
。 -
ScrapData
中,则是缓存的ViewHolder
。
获取方法很简单:
/**
* Acquire a ViewHolder of the specified type from the pool, or {@code null} if none are
* present.
*
* @param viewType ViewHolder type.
* @return ViewHolder of the specified type acquired from the pool, or {@code null} if none
* are present.
*/
@Nullable
public ViewHolder getRecycledView(int viewType) {
final ScrapData scrapData = mScrap.get(viewType);
if (scrapData != null && !scrapData.mScrapHeap.isEmpty()) {
final ArrayList scrapHeap = scrapData.mScrapHeap;
return scrapHeap.remove(scrapHeap.size() - 1);
}
return null;
}
从mScrap
中找到对应ViewType的ScrapData
,然后从队尾拿走一个。
插入方法稍微复杂一点:
/**
* Add a scrap ViewHolder to the pool.
*
* If the pool is already full for that ViewHolder's type, it will be immediately discarded.
*
* @param scrap ViewHolder to be added to the pool.
*/
public void putRecycledView(ViewHolder scrap) {
final int viewType = scrap.getItemViewType();
final ArrayList scrapHeap = getScrapDataForType(viewType).mScrapHeap;
if (mScrap.get(viewType).mMaxScrap <= scrapHeap.size()) {
return;
}
if (DEBUG && scrapHeap.contains(scrap)) {
throw new IllegalArgumentException("this scrap item already exists");
}
scrap.resetInternal();
scrapHeap.add(scrap);
}
包含了一下最大值和重复插入的容错。其中resetInternal
方法,则是会清除ViewHolder中的所有内容。让它成为一个干干净净的ViewHolder。
void resetInternal() {
mFlags = 0;
mPosition = NO_POSITION;
mOldPosition = NO_POSITION;
mItemId = NO_ID;
mPreLayoutPosition = NO_POSITION;
mIsRecyclableCount = 0;
mShadowedHolder = null;
mShadowingHolder = null;
clearPayload();
mWasImportantForAccessibilityBeforeHidden = ViewCompat.IMPORTANT_FOR_ACCESSIBILITY_AUTO;
mPendingAccessibilityState = PENDING_ACCESSIBILITY_STATE_NOT_SET;
clearNestedRecyclerViewIfNotNested(this);
}
RecyclerView每层缓存的作用
整体来说RecyclerView的缓存可分为四层。每一层缓存的目的都不尽相同。当我们想要修改某一层缓存的配置,甚至重写某一层缓存时,我们需要慎重地考虑这一层缓存的作用,当我对它进行修改会带来什么样的后果。
- mAttachedScrap和mChangedScrap,是缓存的屏幕上的可见内容。它本身的大小是无限的,因为屏幕上显示多少item是无法限制的,这一层缓存并不会带来额外的缓存。当我们改变它时,改变的是在屏幕内的item,收到刷新通知时的行为。通常来说,这样的需求是比较少的。
- mCachedViews,是缓存的屏幕外的内容。mCachedViews中的缓存是携带了ViewHolder的数据的。也就是说,它只能缓存已经显示过的ViewHolder。显而易见,它的主要作用是让已经显示过的ViewHolder需要再次显示时,能够快速显示。RecyclerView中,mCachedViews的默认大小为2 。但mCachedViews我们是可以修改的,缓存的越多,用户回看时就越快,同时消耗的内存也越多。这是一个内存和时间置换的配置。当我们内存充裕,或者显示的item比较小时,可以考虑适当地放大这个配置,来增加回看的流畅性。
- mViewCahceExtension,是一层自定义缓存,位于mCacheViews之后,RecycledViewPool之前。首先,我们要明确,mViewCahceExtension还是缓存的带数据的ViewHolder,所以,它本质上和mCachedViews一样,是提升回看性能的。 所以我们通常用它来提升某个特定position的ItemView的回看性能。比如,我们有某个ItemView,界面构建很废时,处在RecyclerView的固定位置中,且界面不需要刷新。这样的ItemView在内存允许的情况下,我们建议在mViewCacheExtension中单独缓存。它不会因为mCachedViews中缓存到上限被回收,回看时也不需要重新构建View。
- RecycledViewPool,是RecyclerView缓存的最后一层。当我们在上面三层缓存都没取到时,才会用到RecycledViewPool。RecycledViewPool也是唯一可以用于尚未展示过的ItemView的一层缓存。RecycledViewPool中存放的都是被清除了数据的ViewHolder。也就是说,它保持着onCreateView后ViewHolder最初的状态。当我们要使用ViewHolder时,就从RecycledViewPool中,拿出对应ViewType的ViewHolder,然后绑上数据,刷新界面。我们从它的结构可以看出,RecycledViewPool几乎是和RecycerView解耦的,它只与ViewHolder有关,和position、数据一概没有关系。所以,我们甚至可以让多个RecyclerView共用一个RecycledViewPool,以此来优化内存。
如何使用RecyclerView
RecyclerView除了基本的onCreateViewHolder和onBindViewHolder外,会有很多工具和配置来提升性能。这些工具和配置为什么需要开发单独配置呢?因为它们只在特定的场景下有效。所以作为开发者,需要了解它,然后在合适的场景使用合适的配置,来提升我们RecyclerView的性能。
DiffUtil
是一个对比新老数据的不同工具类,帮助我们寻找新老数据的最小差异,而不用全量更新。同时,DiffUtil
可以帮助我们子线程更新。这里就不展开,DiffUtil
能提供的功能很多。
setHasFixedSize
如果在提前确定RecyclerView Item的宽高不会受数据影响时,就可以通过setHasFixedSize为设置true,来优化RecyclerView的刷新性能。但是,notifyDataSetChanged
调用后,item
的大小还是会重新计算。
看源码会发现,只有在调用以下四个方法时,会省去item的大小计算:
onItemRangeChanged(),
onItemRangeInserted(),
onItemRangeRemoved(),
onItemRangeMoved(),
而notifyDataSetChanged
被调用时,一定会调用requestLayout()
,从而重新测量宽高。
共用RecycledViewPool
上面讲缓存时,我们看到,RecyclerView的最后一层缓存就是RecycledViewPool
。这一层缓存储存着清空了数据的ViewHolder。既然如此,当我们页面上有多个RecyclerView时,我们是否可以共用RecycledViewPool
?答案是可以的。
我们可以给多个RecyclerView调用setRecycledViewPool
设置相同的RecycledViewPool
,达到缓存共用的目的。
setRecycleChildrenOnDetach
/**
* Set whether LayoutManager will recycle its children when it is detached from
* RecyclerView.
*
* If you are using a {@link RecyclerView.RecycledViewPool}, it might be a good idea to set
* this flag to true
so that views will be available to other RecyclerViews
* immediately.
*
* Note that, setting this flag will result in a performance drop if RecyclerView
* is restored.
*
* @param recycleChildrenOnDetach Whether children should be recycled in detach or not.
*/
public void setRecycleChildrenOnDetach(boolean recycleChildrenOnDetach) {
mRecycleChildrenOnDetach = recycleChildrenOnDetach;
}
注释写得非常清晰了,会在detached时决定是否要回收ViewHolder。这个主要运用在我们多个RecyclerView共用一个RecycledViewPool
时。在RecyclerView从页面中消失时,我们可以清空它的ViewHolder到RecycledViewPool中,为我们其他RecyclerView提供更多的缓存。
setHasStableIds
setHasStableIds 保证相同id下数据不会变化。这样,当我们刷新数据时,RecyclerView就能确认是否数据没有变化,ViewHolder也直接复用,减少重新布局的烦恼。同时,由于ViewHolder没有变动,可以去掉动画。
但这个使用的前提是数据的id一定是唯一的。如果id不变,但数据发生变化,可能就不会刷新了。
onViewRecycled
当 ViewHolder 已经确认被回收,且要放进 RecyclerViewPool
中前,该方法会被回调。值得注意的是,这里并不是Item一离开屏幕就会调用,而是等前面几级缓存都填满时,将要放进RecyclerViewPool
时,才会调用此方法。一旦ViewHolder放入RecyclerViewPool
后,数据就会被清空了。
我们可以在这个时间点,做一些内存释放的工作,帮助App减小内存压力。
总结
以上就是RecyclerView的缓存原理与常见优化。我们在学习时,需要时常思考,这一切都是为了什么?为什么RecyclerView要设计这四级缓存,每一级起到了什么作用。然后那些优化方式,为什么要当作外部API来提供,而不是直接在内部帮我们优化,限制又是什么?只有这样,我们才能感受到RecyclerView的巧妙设计,也为我们后续自己工作中的设计提供思路。
技术嘛,需要知其然,知其所以然。