OpenGL光照之投光物

文章目录

  • 平行光
  • 点光源
  • 衰减
    • 实现衰减
  • 聚光
  • 手电筒
  • 平滑/软化边缘
  • 完整代码

 我们目前使用的光照都来自于空间中的一个点。它能给我们不错的效果,但现实世界中,我们有很多种类的光照,每种的表现都不同。将光投射(Cast)到物体的光源叫做投光物(Light Caster)。

平行光

 当一个光源处于很远的地方时,来自光源的每条光线就会近似于互相平行。不论物体和/或者观察者的位置,看起来好像所有的光都来自于同一个方向。当我们使用一个假设光源处于无限远处的模型时,它就被称为定向光,因为它的所有光线都有着相同的方向,它与光源的位置是没有关系的。
 定向光非常好的一个例子就是太阳。太阳距离我们并不是无限远,但它已经远到在光照计算中可以把它视为无限远了。所以来自太阳的所有光线将被模拟为平行光线,我们可以在下图看到:
OpenGL光照之投光物_第1张图片
 因为所有的光线都是平行的,所以物体与光源的相对位置是不重要的,因为对场景中每一个物体光的方向都是一致的。由于光的位置向量保持一致,场景中每个物体的光照计算将会是类似的。
 我们可以定义一个光线方向向量而不是位置向量来模拟一个定向光。着色器的计算基本保持不变,但这次我们将直接使用光的direction向量而不是通过position来计算lightDir向量。

struct Light {
    // vec3 position; // 使用定向光就不再需要了
    vec3 direction;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
...
void main()
{
  vec3 lightDir = normalize(-light.direction);
  ...
}

 注意我们首先对light.direction向量取反。我们目前使用的光照计算需求一个从片段至光源的光线方向,但人们更习惯定义定向光为一个从光源出发的全局方向。所以我们需要对全局光照方向向量取反来改变它的方向,它现在是一个指向光源的方向向量了。而且,记得对向量进行标准化,假设输入向量为一个单位向量是很不明智的。
 最终的lightDir向量将和以前一样用在漫反射和镜面光计算中。
 为了清楚地展示定向光对多个物体具有相同的影响,我们将会再次使用坐标系统章节最后的那个箱子派对的场景。如果你错过了派对,我们先定义了十个不同的箱子位置,并对每个箱子都生成了一个不同的模型矩阵,每个模型矩阵都包含了对应的局部-世界坐标变换:

for(unsigned int i = 0; i < 10; i++)
{
    glm::mat4 model;
    model = glm::translate(model, cubePositions[i]);
    float angle = 20.0f * i;
    model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
    lightingShader.setMat4("model", model);

    glDrawArrays(GL_TRIANGLES, 0, 36);
}

 同时,不要忘记定义光源的方向(注意我们将方向定义为从光源出发的方向,你可以很容易看到光的方向朝下)。

lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);

OpenGL光照之投光物_第2张图片

点光源

 定向光对于照亮整个场景的全局光源是非常棒的,但除了定向光之外我们也需要一些分散在场景中的点光源(Point Light)。点光源是处于世界中某一个位置的光源,它会朝着所有方向发光,但光线会随着距离逐渐衰减。想象作为投光物的灯泡和火把,它们都是点光源。
OpenGL光照之投光物_第3张图片
 我们一直都在使用一个(简化的)点光源。我们在给定位置有一个光源,它会从它的光源位置开始朝着所有方向散射光线。然而,我们定义的光源模拟的是永远不会衰减的光线,这看起来像是光源亮度非常的强。在大部分的3D模拟中,我们都希望模拟的光源仅照亮光源附近的区域而不是整个场景。

衰减

 随着光线传播距离的增长逐渐削减光的强度通常叫做衰减(Attenuation)。随距离减少光强度的一种方式是使用一个线性方程。这样的方程能够随着距离的增长线性地减少光的强度,从而让远处的物体更暗。然而,这样的线性方程通常会看起来比较假。在现实世界中,灯在近处通常会非常亮,但随着距离的增加光源的亮度一开始会下降非常快,但在远处时剩余的光强度就会下降的非常缓慢了。所以,我们需要一个不同的公式来减少光的强度。
 下面这个公式根据片段距光源的距离计算了衰减值,之后我们会将它乘以光的强度向量:
Fatt=1.0/Kc+Kl∗d+Kq∗d2
 在这里d代表了片段距光源的距离。接下来为了计算衰减值,我们定义3个(可配置的)项:常数项Kc、一次项Kl和二次项Kq。

实现衰减

 为了实现衰减,在片段着色器中我们还需要三个额外的值:也就是公式中的常数项、一次项和二次项。它们最好储存在之前定义的Light结构体中。

struct Light {
    vec3 position;  

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;

    float constant;
    float linear;
    float quadratic;
};

 然后我们将在OpenGL中设置这些项:我们希望光源能够覆盖50的距离,所以我们会使用表格中对应的常数项、一次项和二次项:

lightingShader.setFloat("light.constant",  1.0f);
lightingShader.setFloat("light.linear",    0.09f);
lightingShader.setFloat("light.quadratic", 0.032f);

 在片段着色器中实现衰减还是比较直接的:我们根据公式计算衰减值,之后再分别乘以环境光、漫反射和镜面光分量。
 我们仍需要公式中距光源的距离,还记得我们是怎么计算一个向量的长度的吗?我们可以通过获取片段和光源之间的向量差,并获取结果向量的长度作为距离项。我们可以使用GLSL内建的length函数来完成这一点:

float distance    = length(light.position - FragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance + 
                light.quadratic * (distance * distance));

 接下来,我们将包含这个衰减值到光照计算中,将它分别乘以环境光、漫反射和镜面光颜色。
 我们可以将环境光分量保持不变,让环境光照不会随着距离减少,但是如果我们使用多于一个的光源,所有的环境光分量将会开始叠加,所以在这种情况下我们也希望衰减环境光照。简单实验一下,看看什么才能在你的环境中效果最好。

ambient  *= attenuation; 
diffuse  *= attenuation;
specular *= attenuation;

OpenGL光照之投光物_第4张图片

聚光

 我们要讨论的最后一种类型的光是聚光(Spotlight)。聚光是位于环境中某个位置的光源,它只朝一个特定方向而不是所有方向照射光线。这样的结果就是只有在聚光方向的特定半径内的物体才会被照亮,其它的物体都会保持黑暗。聚光很好的例子就是路灯或手电筒。
 OpenGL中聚光是用一个世界空间位置、一个方向和一个切光角(Cutoff Angle)来表示的,切光角指定了聚光的半径(译注:是圆锥的半径不是距光源距离那个半径)。对于每个片段,我们会计算片段是否位于聚光的切光方向之间(也就是在锥形内),如果是的话,我们就会相应地照亮片段。下面这张图会让你明白聚光是如何工作的:
OpenGL光照之投光物_第5张图片

手电筒

 手电筒(Flashlight)是一个位于观察者位置的聚光,通常它都会瞄准玩家视角的正前方。基本上说,手电筒就是普通的聚光,但它的位置和方向会随着玩家的位置和朝向不断更新。
 所以,在片段着色器中我们需要的值有聚光的位置向量(来计算光的方向向量)、聚光的方向向量和一个切光角。我们可以将它们储存在Light结构体中:

struct Light {
    vec3  position;
    vec3  direction;
    float cutOff;
    ...
};

接下来我们将合适的值传到着色器中:

lightingShader.setVec3("light.position",  camera.Position);
lightingShader.setVec3("light.direction", camera.Front);
lightingShader.setFloat("light.cutOff",   glm::cos(glm::radians(12.5f)));

你可以看到,我们并没有给切光角设置一个角度值,反而是用角度值计算了一个余弦值,将余弦结果传递到片段着色器中。这样做的原因是在片段着色器中,我们会计算LightDir和SpotDir向量的点积,这个点积返回的将是一个余弦值而不是角度值,所以我们不能直接使用角度值和余弦值进行比较。为了获取角度值我们需要计算点积结果的反余弦,这是一个开销很大的计算。所以为了节约一点性能开销,我们将会计算切光角对应的余弦值,并将它的结果传入片段着色器中。由于这两个角度现在都由余弦角来表示了,我们可以直接对它们进行比较而不用进行任何开销高昂的计算。

float theta = dot(lightDir, normalize(-light.direction));

if(theta > light.cutOff) 
{       
  // 执行光照计算
}
else  // 否则,使用环境光,让场景在聚光之外时不至于完全黑暗
  color = vec4(light.ambient * vec3(texture(material.diffuse, TexCoords)), 1.0);

平滑/软化边缘

 为了创建一种看起来边缘平滑的聚光,我们需要模拟聚光有一个内圆锥(Inner Cone)和一个外圆锥(Outer Cone)。我们可以将内圆锥设置为上一部分中的那个圆锥,但我们也需要一个外圆锥,来让光从内圆锥逐渐减暗,直到外圆锥的边界。
 为了创建一个外圆锥,我们只需要再定义一个余弦值来代表聚光方向向量和外圆锥向量(等于它的半径)的夹角。然后,如果一个片段处于内外圆锥之间,将会给它计算出一个0.0到1.0之间的强度值。如果片段在内圆锥之内,它的强度就是1.0,如果在外圆锥之外强度值就是0.0。
OpenGL光照之投光物_第6张图片

完整代码

main.cpp

#include  
#include 
#include 
#include  
#include "../shader.h"
#include "../stb_image.h"
#include "../camera.h"
#include  
#include  
#include 


float vertices[] = {
	// positions          // normals           // texture coords
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 0.0f,
	 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 0.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f, 1.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 1.0f,
	-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f, 0.0f,

	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   1.0f, 1.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 1.0f,
	-0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,   0.0f, 0.0f,

	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 0.0f,
	-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 1.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
	-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
	-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  0.0f, 0.0f,
	-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f, 0.0f,

	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f,
	 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
	 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 1.0f,
	 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  0.0f, 0.0f,
	 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f,

	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 1.0f,
	 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 1.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 0.0f,
	 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f, 0.0f,
	-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 0.0f,
	-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f, 1.0f,

	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 1.0f,
	 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 1.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 0.0f,
	 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f, 0.0f,
	-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 0.0f,
	-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f, 1.0f
};

// positions all containers 
glm::vec3 cubePositions[] = {
glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3(2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3(2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3(1.3f, -2.0f, -2.5f),
glm::vec3(1.5f, 2.0f, -2.5f),
glm::vec3(1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)
};

const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
unsigned int loadTexture(const char* path);


float ratio = 0.5;
void processInput(GLFWwindow* window);
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
float deltaTime = 0.0f; // 距离上一帧的时间间隔 
float lastFrame = 0.0f; // 上一帧发生的时间
bool firstMouse = true;
float yaw = -90.0f;
float pitch = 0.0f;
float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;
float fov = 45.0f;


int main() {
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__ 
	glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
	GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
	if (window == NULL) {
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	//GLFW将窗口的上下文设置为当前线程的上下文
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	//GLAD
	// glad: 加载所有OpenGL函数指针
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	// configure global opengl state
// -----------------------------
	glEnable(GL_DEPTH_TEST);

	Shader ourShader("shaders/shader.vs","shaders/shader.fs");
	Shader lightShader("shaders/shader.vs", "shaders/lightShader.fs");

	//创建VBO和VAO对象,并赋予ID
	unsigned int VBO, VAO;
	glGenVertexArrays(1, &VAO);
	glGenBuffers(1, &VBO);
	//绑定VBO和VAO对象
	glBindVertexArray(VAO);
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	//为当前绑定到target的缓冲区对象创建一个新的数据存储。
	//如果data不是NULL,则使用来自此指针的数据初始化数据存储
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

	//告知Shader如何解析缓冲里的属性值
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
	//开启VAO管理的第一个属性值
	glEnableVertexAttribArray(0);

	//告知Shader如何解析缓冲里的属性值 法向量
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
	//开启VAO管理的第一个属性值
	glEnableVertexAttribArray(1);

	//告知Shader如何解析缓冲里的属性值 纹理坐标
	glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
	//开启VAO管理的第一个属性值
	glEnableVertexAttribArray(2);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);

	stbi_set_flip_vertically_on_load(true);
	unsigned int diffuseMap = loadTexture("../pics/container2.png");
	unsigned int specularMap = loadTexture("../pics/container2_specular.png");


	ourShader.use();
	ourShader.setInt("material.diffuse", 0);
	ourShader.setInt("material.specular", 1);
	ourShader.setInt("material.emission", 2);

	// 渲染循环
	while (!glfwWindowShouldClose(window)) {
		processInput(window);

		float currentFrame = static_cast<float>(glfwGetTime());
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		// input
		// -----
		processInput(window);

		// render
		// ------
		//glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		// bind diffuse map
		glActiveTexture(GL_TEXTURE0);
		glBindTexture(GL_TEXTURE_2D, diffuseMap);
		// bind specular map
		glActiveTexture(GL_TEXTURE1);
		glBindTexture(GL_TEXTURE_2D, specularMap);

		// activate shader
		ourShader.use();

		// pass projection matrix to shader (note that in this case it could change every frame)
		glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
		ourShader.setMat4("projection", projection);

		// camera/view transformation
		glm::mat4 view = camera.GetViewMatrix();
		ourShader.setMat4("view", view);

		// render boxes
		glBindVertexArray(VAO);

		// calculate the model matrix for each object and pass it to shader before drawing
		glm::mat4 model = glm::mat4(1.0f); // make sure to initialize matrix to identity matrix first

		// 光源属性
		ourShader.setVec3("light.ambient", 1.0f, 1.0f, 1.0f);
		ourShader.setVec3("light.diffuse", 1.0f, 1.0f, 1.0f);
		ourShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);
		// 材料属性
		ourShader.setVec3("material.ambient", 0.0f, 0.1f, 0.06f);
		ourShader.setVec3("material.diffuse", 0.0f, 0.50980392f, 0.50980392f);
		ourShader.setVec3("material.specular", 0.50196078f, 0.50196078f, 0.50196078f);
		ourShader.setFloat("material.shininess", 32.0f);

		//lightPos.x = sin((float)glfwGetTime()) * 3.0f;
		//lightPos.z = cos((float)glfwGetTime()) * 3.0f;

		ourShader.setVec3("light.position", camera.Position);
		ourShader.setVec3("light.direction", camera.Front);
		ourShader.setFloat("light.cutOff", glm::cos(glm::radians(12.5f)));
		ourShader.setFloat("light.outerCutOff", glm::cos(glm::radians(17.5f)));

		ourShader.setMat4("model", model);

		ourShader.setVec3("viewPos", camera.Position);
		glDrawArrays(GL_TRIANGLES, 0, 36);

		for (unsigned int i = 0; i < 10; i++) {
			glm::mat4 model = glm::mat4(1.0f);
			model = glm::translate(model, cubePositions[i]);
			float angle = 20.0f * i;
			model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
			ourShader.setMat4("model", model);
			glDrawArrays(GL_TRIANGLES, 0, 36);
		}


		//model = glm::mat4(1.0f);
		//model = glm::translate(model, lightPos);
		//model = glm::scale(model, glm::vec3(0.2f));
		//lightShader.use();
		//lightShader.setMat4("model", model);
		//lightShader.setMat4("projection", projection);
		//lightShader.setMat4("view", view);
		//glDrawArrays(GL_TRIANGLES, 0, 36);
		// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
		// -------------------------------------------------------------------------------
		glfwSwapBuffers(window);
		glfwPollEvents();
	}
	// glfw: 回收前面分配的GLFW先关资源. 
	glfwTerminate();
	glDeleteVertexArrays(1, &VAO);
	glDeleteBuffers(1, &VBO);
	glDeleteProgram(ourShader.ID);

	return 0;
}

unsigned int loadTexture(const char* path)
{
	unsigned int textureID;
	glGenTextures(1, &textureID);

	int width, height, nrComponents;
	unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
	if (data)
	{
		GLenum format;
		if (nrComponents == 1)
			format = GL_RED;
		else if (nrComponents == 3)
			format = GL_RGB;
		else if (nrComponents == 4)
			format = GL_RGBA;

		glBindTexture(GL_TEXTURE_2D, textureID);
		glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

		stbi_image_free(data);
	}
	else
	{
		std::cout << "Texture failed to load at path: " << path << std::endl;
		stbi_image_free(data);
	}

	return textureID;
}

void processInput(GLFWwindow* window)
{
	float cameraSpeed = 2.5f * deltaTime;
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);

	if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
		camera.ProcessKeyboard(RIGHT, deltaTime);

}

void framebuffer_size_callback(GLFWwindow* window, int width, int height) {
	glViewport(0, 0, width, height);
}

void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
	float xpos = static_cast<float>(xposIn);
	float ypos = static_cast<float>(yposIn);

	if (firstMouse)
	{
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	float xoffset = xpos - lastX;
	float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);

}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
	fov -= (float)yoffset;
	if (fov < 1.0f) fov = 1.0f;
	if (fov > 75.0f) fov = 75.0f;
}

shader.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;

out vec3 Normal;
out vec3 FragPos; 
out vec3 lightPos; 
out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    Normal = mat3(transpose(inverse(model))) * aNormal;
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    FragPos = vec3(model * vec4(aPos,1.0));
    TexCoords = aTexCoords;
}

shader.fs

#version 330 core 
out vec4 FragColor; 
struct Material { 
	sampler2D diffuse; 
	sampler2D specular; 
	float shininess; 
}; 
uniform Material material;

struct Light { 
	vec3 position;  
	vec3 direction; 
	float cutOff;
	float outerCutOff;

	vec3 ambient; 
	vec3 diffuse; 
	vec3 specular; 

}; 
uniform Light light; 

uniform vec3 viewPos;
in vec3 Normal;
in vec3 FragPos;
in vec2 TexCoords;
void main() { 
	vec3 lightDir = normalize(light.position-FragPos);
	float theta = dot(lightDir, normalize(-light.direction)); 
	float epsilon = light.cutOff - light.outerCutOff; 
	float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);

	if(intensity > light.outerCutOff) { 
		// ambient 
		vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); 

		// diffuse 
		vec3 norm = normalize(Normal); 
		vec3 lightDir = normalize(light.position - FragPos); 
		float diff = max(dot(norm, lightDir), 0.0); 
		vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
		// specular 
		vec3 viewDir = normalize(viewPos - FragPos); 
		vec3 reflectDir = reflect(-lightDir, norm); 
		float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); 
		vec3 specular = light.specular * spec * (/*vec3(1.0)-*/vec3(texture(material.specular, TexCoords))); 

		diffuse *= intensity; 
		specular *= intensity; 

		vec3 result = ambient + diffuse + specular; 
		FragColor = vec4(result, 1.0); 
	}else
		FragColor = vec4(light.ambient * vec3(texture(material.diffuse, TexCoords)), 1.0);

}

LightShader.fs

#version 330 core 
out vec4 FragColor; 

void main() { 
	FragColor = vec4(1.0); 
}

参考链接

你可能感兴趣的:(c++,OpenGL,opengl,c++)