- 【PSINS】SINS与航位推算的EKF例程讲解|三维轨迹
MATLAB卡尔曼
基于PSINS工具箱的程序设计androidmatlabpsins
文章目录SINS与航位推算例程构造滤波前滤波主体滤波后处理运行结果源代码SINS与航位推算SINS是捷联惯导,略。航位推算:本文讲解的程序是PSINS工具箱(相关文章:PSINS初学指导,https://blog.csdn.net/callmeup/article/details/136459824)的一个函数,在此基础上进行优化。如果要运行,需要先安装工具箱。例程构造滤波前下图蓝色轨迹:滤波主体
- 2-82 基于matlab的多种工况下融合EKF的AUV定位误差
'Matlab学习与应用
matlab工程应用应答器基阵角度传感器速度传感器AUV和AUVEKF的AUV定位误差matlab
基于matlab的多种工况下融合EKF的AUV定位误差,工况1:AUV工况2:应答器基阵+速度传感器+角度传感器;工况3:AUV和AUV+速度传感器+角度传感器;工况4:应答器基阵;工况5:AUV和AUV+速度传感器+角度传感器+应答器基阵。程序已调通,可直接运行。2-82EKF的AUV定位误差-小红书(xiaohongshu.com)
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 惯导系统静止初始化方法与代码实现并在gazebo中测试
古月居GYH
cocos2d游戏引擎
前言在进行GPS加IMU的组合导航或者Lidar加IMU的组合导航时,用EKF或者ESKF的滤波方法时,需要提前知道惯导的测量噪声、初始零偏、重力方向等信息。此时就需要对惯导进行一个初始化,来获取以上信息,常见的初始化方法为静止初始化法。例如无人机在上电后要进行自检,此时需要无人机静止一段时间,通过指示灯来提示自检是否完毕,在静止的过程中,则对惯导进行了初始化的方法。静止初始化方法在传统组合导航系
- 【基于PSINS】误差计算函数
Evand J
PSINS笔记笔记
输入真值(参考值)、对比量、待比较值,输出误差的最大值、平均值、标准差的函数程序源码function[err]=EV_error_output(out_flag,avp_flag,avp,varargin)%draw_flag:以字符串的形式输入绘图的数据,eg:["EKF","UKF"]%avp:基准%avp_:用于对比的加速度、速度、位置%avp_flag:选择输出的是a、v、p中的哪一个,e
- EKF+PF的MATLAB例程
Evand J
matlab开发语言
EKF+PF扩展卡尔曼滤波与粒子滤波的MATLAB程序,有中文注释程序源码%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;rng(0);%%参数设置N=100;%粒子总数
- 基于二阶卡尔曼滤波的陀螺仪及加速度计信号融合的姿态角度测量
星e雨
嵌入式
★基于陀螺仪及加速度计信号融合的姿态角度测量1、系统组成本文所采用的姿态角度测控系统主要由加速度计、陀螺仪、微控制器、滤波电路、电机调速器、无刷电机等部分组成.姿态检测系统的硬件平台如图1,由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速A/D采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过PID控制器运算,输出给电子调速器转换成PWM信
- WebRTC 中带宽估计与拥塞控制算法
逆风了我
WebRTCwebrtc
WebRTC中的带宽估计与拥塞控制算法有很多,以下是其中几种:-GCC(GoogleCongestionControl):基于丢包的带宽估计,其基本思想是根据丢包的多少来判断网络的拥塞程度。丢包越多则认为网络越拥塞,发送速率就需要降低;如果没有丢包,则说明网络状况较好,可以提高发送码率以探测是否有更多的带宽可用。-Goog-REMB:基于接收端的延迟算法,利用延迟值,通过卡尔曼滤波器估计出下一时刻
- 扩展卡尔曼滤波与粒子滤波例程
Evand J
算法人工智能
三维滤波,非线性系统状态与非线性观测,使用EKF和PF进行滤波,输出滤波值曲线与误差对比,MATLAB程序如下:%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;%%参数设置N=100;%粒子总数t=1:1:
- 卡尔曼滤波详解(1)
见牛羊
人工智能人工智能数学建模
目录1.核心思想2.五个公式的解读2.1预测部分2.2更新部分3.公式的实际应用4.调参方法1.核心思想首先,卡尔曼滤波器可以用来估计系统的状态,这个状态是时间序列上的,利用上一时刻的状态可以预测当前时刻的状态,利用当前时刻的观测可以更新和修正当前时刻的预测。这么说可能有点绕,看下图。绿色的x表示系统的状态,y表示对系统状态的观测,蓝色的x表示修正后的状态。卡尔曼滤波的核心思想,就是用利用蓝色进行
- EKF与UKF对比,三维状态量滤波
Evand J
人工智能matlab
扩展卡尔曼滤波EKF与无迹卡尔曼滤波UKF的MATLAB程序,程序源码:%EKF+UKF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,付费咨询)%date:2023-11-07%Ver1clear;clc;closeall;%%滤波模型初始化t=1:1:1000;Q=1*
- 【嵌入式开发】80
少年郎123456
单片机嵌入式硬件stm32fpga开发
【嵌入式开发】STM32在四轴无人机开发中实现飞行控制主要通过以下步骤:读取传感器数据:STM32通过I2C、SPI等接口与各种传感器进行通信,如陀螺仪、加速度计、磁力计等。它定时读取这些传感器的原始数据,这些数据反映了无人机的姿态、位置和速度等信息。数据处理与姿态解算:读取到的原始数据通常包含噪声和误差,需要进行滤波和处理。STM32运行相应的算法对这些数据进行处理,如卡尔曼滤波、互补滤波等,以
- 无人机飞控算法原理基础研究,多旋翼无人机的飞行控制算法理论详解,无人机飞控软件架构设计
创小董
无人机技术无人机算法
多旋翼无人机的飞行控制算法主要涉及到自动控制器、捷联式惯性导航系统、卡尔曼滤波算法和飞行控制PID算法等部分。自动控制器是无人机飞行控制的核心部分,它负责接收来自无人机传感器和其他系统的信息,并根据预设的算法和逻辑,对无人机的姿态、速度、位置等进行控制。控制器通过控制无人机的电机,使无人机能够按照期望的姿态、速度和位置进行飞行。捷联式惯性导航系统则是一种自主式的导航方法,利用载体上的加速度计、陀螺
- Python 算法集
Aaronlan
01目录环境需求怎样使用本地化扩展卡尔曼滤波本地化无损卡尔曼滤波本地化粒子滤波本地化直方图滤波本地化映射高斯网格映射光线投射网格映射k均值物体聚类圆形拟合物体形状识别SLAM迭代最近点匹配EKFSLAMFastSLAM1.0FastSLAM2.0基于图的SLAM路径规划动态窗口方式基于网格的搜索迪杰斯特拉算法A*算法势场算法模型预测路径生成路径优化示例查找表生成示例状态晶格规划均匀极性采样(Uni
- 第1章 数字基础
猫三他爹
引在本章中,我们将尝试讨论整个文本中使用的所有数值技术。我们将首先讨论向量和矩阵,并说明在应用卡尔曼滤波方程时我们需要知道的各种操作。接下来,我们将展示如何使用两种不同的数值积分技术来求解线性和非线性微分方程。当我们必须将表示现实世界的微分方程整合在用于评估卡尔曼滤波器性能的模拟中时,数值积分技术是必要的。此外,有时需要数值积分技术来传播来自非线性微分方程的状态。接下来,我们将回顾用于表示随机现象
- 室内定位系列
_49_
室内定位系列(一)——WiFi位置指纹(译)室内定位系列(二)——仿真获取RSS数据室内定位系列(三)——位置指纹法的实现(KNN)室内定位系列(四)——位置指纹法的实现(测试各种机器学习分类器)室内定位系列(五)——目标跟踪(卡尔曼滤波)室内定位系列(六)——目标跟踪(粒子滤波)
- PX4在使用外部定位下跳出position模式
飞同学
实战技能实战技能
之前一直使用relsensed435的vio代码生成的pose位置信息,飞控端位置信息比较稳定。更换livox-mid360使用fastlio代码后,飞控端经常出现位置模式下莫名报黄不能解锁和跳出位置模式的情况。原因:外部输入的位置定位和px4加速度计估计的差别挺大,导致EKF2融合会出现延迟。尤其是在飞机急停或者转弯,px4实际融合的位置会延迟或者超调。大部分帖子给出的解决方式都是通过log分析
- 贝叶斯滤波:卡尔曼滤波、直方图滤波、粒子滤波
于小咸
SLAM漫谈slam卡尔曼滤波算法
卡尔曼滤波、粒子滤波、直方图滤波是贝叶斯滤波的三种实现形式,在《概率机器人》这本书中,按照“线性→非线性”的顺序讲解,先介绍卡尔曼滤波,再介绍直方图滤波和粒子滤波。但我发现先介绍直方图滤波效果可能会比较好,因为直方图滤波是贝叶斯滤波最直观的实现方案,读者可以很方便地从贝叶斯滤波的离散形式直接推出简单直方图滤波。掌握贝叶斯滤波的一般形式后,再学习高斯噪声假设下的卡尔曼滤波,掌握起来会比较轻松。遵循“
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- 卡尔曼滤波、马尔科夫模型、粒子滤波、TSP问题知识点回顾
竹叶青lvye
程序员的数学卡尔曼滤波隐马尔可夫模型动态规划粒子滤波
前面有小结了概率论、线性代数、现代控制理论的一些知识点,这边再来回顾下之前看过了关于卡尔曼滤波、马尔科夫模型、粒子滤波、动态规划中的TSP问题,这边也只是知其形,便于日后应用到一些实际案例中。一.卡尔曼滤波这边只是记录要点,便于快速回忆起来,可以从如下5个公式来入手。所以在代码初始化的时候要先初始化状态真实值和后验误差协方差矩阵主要可参考博客一文看懂卡尔曼滤波(附全网最详细公式推导)-知乎其它博客
- 关键点平滑算法笔记
AI视觉网奇
姿态检测人工智能
目录关键点卡尔曼滤波和低通滤波alpahpose是跟踪box的关键点卡尔曼滤波和低通滤波importnumpyasnpimportmatplotlib.pyplotasplt#rShldrBend0,rForearmBend1,rHand2,rThumb23,rMid14,#lShldrBend5,lForearmBend6,lHand7,lThumb28,lMid19,#lEar10,lEye1
- 基于卡尔曼滤波的平面轨迹优化
点PY
机器人导航定位c++卡尔曼滤波
文章目录概要卡尔曼滤波代码主函数代码CMakeLists.txt概要在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。优化的结果为黄色线。卡尔曼滤波代码#include
- AppDesigner语音滤波器设计——IIR、IIR、维纳滤波、卡尔曼滤波、自适应滤波
MatpyMaster
付费专栏MatlabAppdesigner信号处理matlab开发语言
1.AppDesigner简介AppDesigner是一个可视化的集成开发环境,提供了仪表、旋钮等组件,采用面向对象的设计方法。利用AppDesigner可以快速开发出应用程序。AppDesigner提供了各种UI组件,如按钮、文本框、图表等,以及用于布局和设计的工具。开发人员可以使用MATLAB代码来定义组件的行为和应用程序的逻辑。这使得在不需要深入了解GUI编程的情况下,就能够快速构建功能强大
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4
LiongLoure
运动学与动力学学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-3+43.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/PosterrorierrorCovarianceMartix误差协方差矩阵3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-5+65.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)5.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch051.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-1+2
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-1+21.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器1.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMa
- 运动模型非线性测量非线性扩展卡尔曼跟踪融合滤波算法(Matlab仿真)
奔袭的算法工程师
感知后处理算法matlab人工智能自动驾驶目标跟踪
卡尔曼滤波的原理和理论在CSDN已有很多文章,这里不再赘述,仅分享个人的理解和Matlab仿真代码。之前的博文运动模型非线性扩展卡尔曼跟踪融合滤波算法(Matlab仿真)-CSDN博客使用扩展卡尔曼滤波算法将非线性的运动模型线性化,但测量值仍旧是线性的,不需要雅可比矩阵。这里考虑测量值也为非线性的情况,并用Matlab做仿真。如果估计值为[x,y,v,theta,w],测量值为[x,y,v,the
- 线性卡尔曼跟踪融合滤波算法(Matlab仿真)
奔袭的算法工程师
感知后处理人工智能算法自动驾驶目标检测信号处理
卡尔曼滤波的原理和理论在CSDN已有很多文章,这里不再赘述,仅分享个人的理解和Matlab仿真代码。1单目标跟踪假设目标的状态为X=[x,y,vx,vy],符合匀速直线运动目标,也即其中F为状态转移矩阵,在匀速直线(constvelocity)运动模型时,整个系统为线性状态,可以直接调用卡尔曼滤波的几个公式考虑到实际测量值的状态,Z=[x,y,vx,vy],观测矩阵可以写作如果测量值Z=[x,y]
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1