- 从RNN循环神经网络到Transformer注意力机制:解析神经网络架构的华丽蜕变
熊猫钓鱼>_>
神经网络rnntransformer
1.引言在自然语言处理和序列建模领域,神经网络架构经历了显著的演变。从早期的循环神经网络(RNN)到现代的Transformer架构,这一演变代表了深度学习方法在处理序列数据方面的重大进步。本文将深入比较这两种架构,分析它们的工作原理、优缺点,并通过实验结果展示它们在实际应用中的性能差异。2.循环神经网络(RNN)2.1基本原理循环神经网络是专门为处理序列数据而设计的神经网络架构。RNN的核心思想
- Manus AI与多语言手写识别
ManusAI与多语言手写识别背景与概述手写识别技术的发展现状与挑战ManusAI的核心技术与应用场景多语言手写识别的市场需求与难点ManusAI的技术架构深度学习在手写识别中的应用多语言支持的模型设计数据预处理与特征提取方法多语言手写识别的关键挑战不同语言字符的多样性处理上下文语义与书写风格适应性低资源语言的训练数据获取解决方案与优化策略迁移学习在多语言任务中的应用端到端模型的优化与轻量化用户反
- 揭秘 LeetCode 数据结构与算法的高效学习方法
数据结构与算法学习
leetcode学习方法算法ai
揭秘LeetCode数据结构与算法的高效学习方法关键词:LeetCode、数据结构、算法、高效学习、解题技巧、知识体系、面试准备摘要:本文以“如何高效通过LeetCode学习数据结构与算法”为核心,结合新手常见痛点(如刷题没方向、刷完就忘、无法举一反三),通过生活化类比、具体案例拆解和可操作的学习方法,系统讲解从“入门到精通”的全流程。无论是求职准备的程序员,还是想提升编程能力的学习者,都能从中找
- 大模型的温度?解读Temperature
半吊子全栈工匠
LLM温度是一个参数,它控制着LLM预测的下一个单词的概率分布。它通过改变下一个单词被选中的可能性,为LLM的输出增加了一些随机性或多样性。温度可以影响LLM的输出,使其更确定(可预测)或更随机(随机),这样的参数被用来模拟或模仿人类语言产生的内在变化。1.LLMTemperature的简要回顾在生产环境中,较低的温度值(1)可以导致更随机或随机和多变的LLM输出,被称为使LLM更“创造性”。然而
- Python爬虫实战:研究python-nameparser库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言nameparser
1.引言在当今数字化时代,姓名作为个人身份的重要标识,在许多领域都有着广泛的应用需求。例如,在客户关系管理系统中,准确解析姓名可以帮助企业更好地了解客户背景;在学术研究中,分析作者姓名分布有助于发现研究团队的地域特征;在社交网络分析中,姓名信息可以辅助进行用户画像构建。然而,由于不同文化背景下姓名结构的多样性以及书写方式的差异,准确解析姓名成为一项具有挑战性的任务。Python作为一种功能强大的编
- iOS苹果和Android安卓测试APP应用程序的区别差异
iOS苹果和Android安卓在测试APP应用程序时存在显著差异,这些差异主要源于系统架构、生态规则、设备多样性等多重因素。以下是具体的区别:一、操作系统与生态iOS是苹果公司的封闭移动操作系统,而Android是谷歌开发的开放源码移动操作系统。iOS设备生态系统相对封闭,仅限于苹果自家设备,硬件和软件高度整合;Android设备生态系统则相对开放,存在多种品牌和型号,硬件和软件组合多样性大。二、
- 集成学习中的多样性密码:量化学习器的多样性
元楼
集成学习学习机器学习人工智能
合集-scikit-learn(69)1.【scikit-learn基础】--概述2023-12-022.【scikit-learn基础】--『数据加载』之玩具数据集2023-12-043.【scikit-learn基础】--『数据加载』之真实数据集2023-12-064.【scikit-learn基础】--『数据加载』之样本生成器2023-12-085.【scikit-learn基础】--『数据
- 鸟类识别与分类相关数据集
Bryan Ding
分类数据挖掘人工智能
随着深度学习技术的快速发展,其在图像识别、语音识别等领域取得了显著的成果。鸟类识别作为生态学研究的重要内容,对于物种多样性保护、生态环境监测等领域具有深远的影响。将深度学习技术应用于鸟类识别,有望提高识别的准确性和效率,为鸟类学研究提供有力支持。本文综述了近年来深度学习在鸟类识别中的应用进展,包括基于图像和声音的鸟类识别系统,分析了其技术框架、实现方法以及在实际应用中的效果。通过对相关文献的梳理,
- 2024最新 动物识别数据集(12-02已更新)
数据猎手小k
机器学习自然语言处理人工智能
动物识别数据集是用于训练和评估动物识别模型的集合,这些数据集通常包含多种动物的图像或视频,以及对应的标签信息。它们在生物多样性监测、生态研究、农业和城市安全管理等领域发挥着重要作用。随着深度学习技术的发展,动物识别数据集的处理方式、算法逻辑和模型搭建与训练流程也在不断进步,以提高识别的准确性和效率。一、背景意义动物识别技术的发展对于生物多样性保护、生态学研究、农业和野生动物保护等多个领域具有重要意
- Python爬虫实战:研究chardet库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言chardet
1.引言1.1研究背景与意义在互联网信息爆炸的时代,网络数据采集技术已成为信息获取、数据分析和知识发现的重要手段。Python作为一种高效的编程语言,凭借其丰富的第三方库和简洁的语法,成为爬虫开发的首选语言之一。然而,在网络数据采集中,文本编码的多样性和不确定性一直是困扰开发者的主要问题之一。不同网站可能采用不同的编码方式(如UTF-8、GBK、GB2312等),甚至同一网站的不同页面也可能使用不
- 搜索、广告与推荐的比较
搜索搜索广告显示广告推荐首要准则相关性投资回报率(ROI)用户兴趣其他需求各垂直领域独立定义质量,安全性(Safety)多样性(diversity),新鲜度(freshness)索引规模~十亿级~百万级--千万级~百万级~百万级--亿级个性化较少的个性化需求~亿级用户规模上的个性化检索信号较为集中较为丰富Downstream优化不适用`适用广告明显比搜索容易部分的是不需要复杂的爬虫技术和PageR
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 零代码,搭出专属PLC监控大屏
不同行业PLC需监测的数据各异,ZWS-IoT低代码平台通过CATCOM-100网关接入PLC数据,快速搭建专属IoT监控页面。行业痛点:数据多样性与可视化瓶颈在工业自动化领域,不同行业对PLC监测的业务数据有着截然不同的需求,例如:能源行业的锅炉压力、温度曲线,到制造业的产线节拍、设备状态;环保领域的排放指标、能耗分析,每一项数据都需要精准采集与直观呈现。传统开发模式下,为每种场景定制Web监控
- 遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
神经网络15044
仿真模型神经网络深度学习深度学习分类cnn算法网络集成学习数据挖掘
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法1.任务概述岩性分类是地质遥感的核心任务,旨在通过遥感影像识别地表岩石类型。本文使用ASTER(多光谱热辐射传感器)和Sentinel(多光谱成像卫星)数据,采用卷积神经网络(CNN)及CNN-集成学习(CNN-EL)方法实现高精度岩性分类。2.数据预处理2.1数据源说明ASTER数据:14个波段(VNIR/SWIR/TIR),分辨率
- 高可扩展属性建模设计:架构师的全局思考与落地方案
nbsaas-boot
数据库
在复杂业务系统中,动态属性扩展始终是架构设计的核心难题之一。传统方案如宽表设计和EAV(实体-属性-值)模型分别在性能与扩展性上各有优势与劣势,但也都有明显局限。为了兼顾性能、扩展性、维护成本,需要引入更灵活的设计模式。本文将深入探讨除宽表和EAV以外的几种现代解决方案,并提供综合推荐。一、问题背景:属性扩展的基本矛盾属性扩展的根本矛盾是:字段的多样性&动态性↔结构化存储&高性能查询需求变动频繁↔
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- 【Note】《深入理解Linux内核》Chapter 13 :深入理解 Linux 内核中的 I/O 架构与设备驱动
CodeWithMe
读书笔记linuxlinux架构运维
《深入理解Linux内核》Chapter13:深入理解Linux内核中的I/O架构与设备驱动关键词:I/O子系统、字符设备、块设备、VFS、设备驱动、file_operations、设备号、cdev、gendisk、驱动模型、模块加载、udev一、LinuxI/O架构总览1.1为什么需要抽象化的I/O架构?设备多样性(硬盘、串口、键盘、GPU);设备访问方式差异极大;用户空间程序期望统一的访问接口
- 蒙特卡罗方法与深度学习的关系
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
蒙特卡罗方法与深度学习的关系作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来蒙特卡罗方法和深度学习都是近年来在计算科学和人工智能领域取得重大突破的技术。蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于物理、工程、金融等领域。深度学习则是一种基于人工神经网络的学习方法,在图像识别、语音识别、自然语言处理等领域取得了显
- 提升学习能力(一)
如果决定要走又何必挽留
学习方法学习
前言:在学习一项技能在时候,通常会感到学了一遍,,没有任何的头绪,一直在通过做的时候通过来总结来去干,这样往往在学习的时候,不能事半功倍,在学习的时候也没有任何方法,毫无头绪,于是想写点关于提升学习能力的东西,刚才在前面的介绍说了,对于别人的教学没有任何头绪,下面的学习四步骤通过借鉴别人的学习经验,每个人的学习技巧,方法,都不一样,适合自己的才是做好的。一.学习方法1:兴趣法,有很多不感兴趣的东西
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 机器学习:集成学习方法之随机森林(Random Forest)
慕婉0307
机器学习集成学习机器学习随机森林
一、集成学习与随机森林概述1.1什么是集成学习集成学习(EnsembleLearning)是机器学习中一种强大的范式,它通过构建并结合多个基学习器(baselearner)来完成学习任务。集成学习的主要思想是"三个臭皮匠,顶个诸葛亮",即通过组合多个弱学习器来获得一个强学习器。集成学习方法主要分为两大类:Bagging(BootstrapAggregating):并行训练多个基学习器,然后通过投票
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- Gartner《Choosing Event Brokers to Support Event-DrivenArchitecture》心得
架构师学习成长之路
架构事件管理
一、概述随着企业数字化转型的加速,事件驱动架构(EDA)在应用和集成架构中扮演着越来越重要的角色。事件代理作为EDA的核心组件,其选择对于整个系统的性能、可靠性和可扩展性都有着深远的影响。二、关键发现需求与功能不匹配的代价高:事件代理功能的多样性使得在选择时必须精准匹配需求。例如,若一个系统需要高吞吐量和低延迟,而选择了不适合的代理,后期修改架构和代码的代价极高。四核心领域需关注:客户端连接:涉及
- sda剩余的存储空间分配到sda2根目录(/)
sda8:0080G0disk├─sda18:101M0part└─sda28:2040G0part/sr011:013G0rom步骤1:检查分区布局使用lsblk或fdisk确认剩余空间的位置:sudofdisk-l/dev/sda确保剩余空间紧接在sda2分区之后。步骤2:安装必要工具确保已安装cloud-utils和e2fsprogs:sudoapt-getupdate&&sudoapt-g
- CAN转Modbus TCP网关赋能食品搅拌机智能协同控制
JIANGHONGZN
工业通讯协议网关CANMODBUSMODBUSTCP
在食品搅拌机的自动化控制系统中,设备通信协议的多样性给系统集成带来挑战。JH-CAN-TCP疆鸿智能CAN主站转ModbusTCP从站的网关,成为连接西门子PLC与伺服系统的关键桥梁。西门子PLC常采用ModbusTCP协议,用于实现与上位机、人机界面等设备的数据交互。而伺服系统多使用CAN协议,因其具备高速、可靠、抗干扰能力强等特点,能精准控制电机运行。该网关可将西门子PLC发出的ModbusT
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- StackGAN(堆叠生成对抗网络)的介绍
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s