Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
#include<stdio.h>
int main(void) { int a, b, n; int f1, f2, f3; while(1) { scanf("%d%d%d", &a, &b, &n); if(a==0 && b==0 && n==0) break; f1 = 1; f2 = 1; f3 = 1; for(int i = 3; i <= n; i++) { f3 = (a*f2 + b*f1)%7; f1 = f2; f2 = f3; } printf("%d\n", f3); } return 0; }
可惜暴力的后果是WA,再仔细看一下数据范围,n的取值达到一亿。由于数据范围很大,因此这题不适合暴力。
那么这道类似斐波那契数列的题目该如何搞呢?很明显,f(n-1)和f(n-2)的取值只可能有0, 1, 2, 3, 4, 5, 6这七种情况。因此f(n-1)+f(n-2)的组合一共有7*7种情况,这说明什么呢?说明数列(以f3作为第一个数)出现循环最多在第50个数(最坏的情况,可由鸽巢原理得出)。
修改后的程序:
#include<stdio.h>
int main(void) { int f1, f2, a, b, n, i; int arr[55]; // 空间够用的话多开点没坏处 while(1) { scanf("%d%d%d", &a, &b, &n); if(a == 0 && b == 0 && n == 0) break; f1 = f2 = 1; for(i = 0; ; i++) // 一定会结束,因为最多在第50个数出现循环,其中i-1是循环周期
{ arr[i] = (a*f2 + b*f1)%7; f1 = f2; f2 = arr[i]; if(i >= 3 && arr[i-1] == arr[0] && arr[i] == arr[1] ) break; } if(n == 1 || n == 2) printf("1\n"); else printf("%d\n", arr[(n-3)%(i-1)]); } return 0; }