用Python爬取电影数据并可视化分析_python电影数据分析

文章目录

  • 一、获取数据
    • 1.技术工具
    • 2.爬取目标
    • 3.字段信息
  • 二、数据预处理
    • 1.加载数据
    • 2.异常值处理
    • 3.字段处理
  • 三、数据可视化
  • 四、总结


一、获取数据

1.技术工具

IDE编辑器:vscode

发送请求:requests

解析工具:xpath

def Get_Detail(Details_Url):
    Detail_Url = Base_Url + Details_Url
    One_Detail = requests.get(url=Detail_Url, headers=Headers)
    One_Detail_Html = One_Detail.content.decode('gbk')
    Detail_Html = etree.HTML(One_Detail_Html)
    Detail_Content = Detail_Html.xpath("//div[@id='Zoom']//text()")
    Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list = None,None,None,None,None,None,None,None,None,None
    for index, info in enumerate(Detail_Content):
        if info.startswith('◎译  名'):
            Video_Name_CN = info.replace('◎译  名', '').strip()
        if info.startswith('◎片  名'):
            Video_Name = info.replace('◎片  名', '').strip()
        if info.startswith('◎产  地'):
            Video_Address = info.replace('◎产  地', '').strip()
        if info.startswith('◎类  别'):
            Video_Type = info.replace('◎类  别', '').strip()
        if info.startswith('◎语  言'):
            Video_language = info.replace('◎语  言', '').strip()
        if info.startswith('◎上映日期'):
            Video_Date = info.replace('◎上映日期', '').strip()
        if info.startswith('◎豆瓣评分'):
            Video_Number = info.replace('◎豆瓣评分', '').strip()
        if info.startswith('◎片  长'):
            Video_Time = info.replace('◎片  长', '').strip()
        if info.startswith('◎导  演'):
            Video_Daoyan = info.replace('◎导  演', '').strip()
        if info.startswith('◎主  演'):
            Video_Yanyuan_list = []
            Video_Yanyuan = info.replace('◎主  演', '').strip()
            Video_Yanyuan_list.append(Video_Yanyuan)
            for x in range(index + 1, len(Detail_Content)):
                actor = Detail_Content[x].strip()
                if actor.startswith("◎"):
                    break
                Video_Yanyuan_list.append(actor)
    print(Video_Name_CN,Video_Date,Video_Time)
    f.flush()
    try:
        csvwriter.writerow((Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list))
    except:
        pass

保存数据:csv

if __name__ == '__main__':
    with open('movies.csv','a',encoding='utf-8',newline='')as f:
        csvwriter = csv.writer(f)
        csvwriter.writerow(('Video_Name_CN','Video_Name','Video_Address','Video_Type','Video_language','Video_Date','Video_Number','Video_Time','Video_Daoyan','Video_Yanyuan_list'))
        spider(117)

2.爬取目标

本次爬取的目标网站是阳光电影网https://www.ygdy8.net,用到技术为requests+xpath。主要获取的目标是2016年-2023年之间的电影数据。

3.字段信息

获取的字段信息有电影译名、片名、产地、类别、语言、上映时间、豆瓣评分、片长、导演、主演等,具体说明如下:

字段名 含义

Video_Name_CN

电影译名

Video_Name

电影片名

Video_Address

电影产地

Video_Type

电影类别

Video_language

电影语言

Video_Date

上映时间

Video_Number

电影评分

Video_Time

片长

Video_Daoyan

导演

Video_Yanyuan_list

主演列表

2eb1c81e86c946a9bb0f639a603507ec.png

二、数据预处理

技术工具:jupyter notebook

1.加载数据

首先使用pandas读取刚用爬虫获取的电影数据

9777abe0e1d343f683e8693af8b2d2e7.png

2.异常值处理

这里处理的异常值包括缺失值和重复值

首先查看原数据各字段的缺失情况

7eb50ac4e1514425a915b6dec4483703.png

从结果中可以发现缺失数据还蛮多的,这里就为了方便统一删除处理,同时也对重复数据进行删除

831de5c76758493c8127b2e4c55ed5d8.png

可以发现经过处理后的数据还剩1711条。

3.字段处理

由于爬取的原始数据中各个字段信息都很乱,出现很多“/”“,”之类的,这里统一进行处理,主要使用到pandas中的apply()函数,同时由于我们分析的数2016-2023年的电影数据,除此之外的进行删除处理

# 数据预处理
data['Video_Name_CN'] = data['Video_Name_CN'].apply(lambda x:x.split('/')[0]) # 处理Video_Name_CN
data['Video_Name'] = data['Video_Name'].apply(lambda x:x.split('/')[0]) # 处理Video_Name
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split('/')[0])  # 处理Video_Address
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split(',')[0].strip())
data['Video_language'] = data['Video_language'].apply(lambda x:x.split('/')[0])
data['Video_language'] = data['Video_language'].apply(lambda x:x.split(',')[0])
data['Video_Date'] = data['Video_Date'].apply(lambda x:x.split('(')[0].strip())
data['year'] = data['Video_Date'].apply(lambda x:x.split('-')[0])
data['Video_Number'] = data['Video_Number'].apply(lambda x:x.split('/')[0].strip())
data['Video_Number'] = pd.to_numeric(data['Video_Number'],errors='coerce')
data['Video_Time'] = data['Video_Time'].apply(lambda x:x.split('分钟')[0])
data['Video_Time'] = pd.to_numeric(data['Video_Time'],errors='coerce')
data['Video_Daoyan'] = data['Video_Daoyan'].apply(lambda x:x.split()[0])
data.drop(index=data[data['year']=='2013'].index,inplace=True)
data.drop(index=data[data['year']=='2014'].index,inplace=True)
data.drop(index=data[data['year']=='2015'].index,inplace=True)
data.dropna(inplace=True)
data.head()

d4b371dc9cd5455abf1680f37929c04b.png

三、数据可视化

1.导入可视化库

本次可视化主要用到matplotlib、seaborn、pyecharts等第三方库

import matplotlib.pylab as plt
import seaborn as sns
from pyecharts.charts import *
from pyecharts.faker import Faker
from pyecharts import options as  opts 
from pyecharts.globals import ThemeType
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示

2.分析各个国家发布的电影数量占比

# 分析各个国家发布的电影数量占比
df2 = data.groupby('Video_Address').size().sort_values(ascending=False).head(10)
a1 = Pie(init_opts=opts.InitOpts(theme = ThemeType.LIGHT))
a1.add(series_name='电影数量',
        data_pair=[list(z) for z in zip(df2.index.tolist(),df2.values.tolist())],
        radius='70%',
        )
a1.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item'))
a1.render_notebook()

0cb43f91c069428a869464b8154f2356.png

3.发布电影数量最高Top5导演

# 发布电影数量最高Top5导演
a2 = Bar(init_opts=opts.InitOpts(theme = ThemeType.DARK))
a2.add_xaxis(data['Video_Daoyan'].value_counts().head().index.tolist())
a2.add_yaxis('电影数量',data['Video_Daoyan'].value_counts().head().values.tolist())
a2.set_series_opts(itemstyle_opts=opts.ItemStyleOpts(color='#B87333'))
a2.set_series_opts(label_opts=opts.LabelOpts(position="top"))
a2.render_notebook()

3729dda2f8134060be3c22b02877201d.png

4.分析电影平均评分最高的前十名国家

# 分析电影平均评分最高的前十名国家
data.groupby('Video_Address').mean()['Video_Number'].sort_values(ascending=False).head(10).plot(kind='barh')
plt.show()

b5c0bb8766ad4b59a956bd85eb80d771.png

5.分析哪种语言最受欢迎

# 分析哪种语言最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_language'].values:
    word_list = str(i).split('/')
    for j in word_list:
        result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

0a6985be59194a13b35e0ebcffa99eb0.png

6.分析哪种类型电影最受欢迎

# 分析哪种类型电影最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_Type'].values:
    word_list = str(i).split('/')
    for j in word_list:
        result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

a45b8c08cbdc42b89ed7e49665b2b3d5.png

7.分析各种类型电影的比例

# 分析各种类型电影的比例
word_counts_top = word_counts.most_common(10)
a3 = Pie(init_opts=opts.InitOpts(theme = ThemeType.MACARONS))
a3.add(series_name='类型',
        data_pair=word_counts_top,
        rosetype='radius',
        radius='60%',
        )
a3.set_global_opts(title_opts=opts.TitleOpts(title="各种类型电影的比例",
                        pos_left='center',
                    pos_top=50))
a3.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a} 
{b}:{c} ({d}%)'
)) a3.render_notebook()

55179367949d41dabc16322715245895.png

8.分析电影片长的分布

# 分析电影片长的分布
sns.displot(data['Video_Time'],kde=True)
plt.show()

198a8105d28e49f5bfad37f07c7bb327.png

9.分析片长和评分的关系

# 分析片长和评分的关系
plt.scatter(data['Video_Time'],data['Video_Number'])
plt.title('片长和评分的关系',fontsize=15)
plt.xlabel('片长',fontsize=15)
plt.ylabel('评分',fontsize=15)
plt.show()

0f8408e04743414f9a96ab8ca3a9f380.png

10.统计 2016 年到至今的产出的电影总数量

# 统计 2016 年到至今的产出的电影总数量
df1 = data.groupby('year').size()
line = Line()
line.add_xaxis(xaxis_data=df1.index.to_list())
line.add_yaxis('',y_axis=df1.values.tolist(),is_smooth = True)  
line.set_global_opts(xaxis_opts=opts.AxisOpts(splitline_opts = opts.SplitLineOpts(is_show=True)))
line.render_notebook()

b5c16c900c4f42cbb97da0958808dd34.png

四、总结

本次实验通过使用爬虫获取2016年-2023年的电影数据,并可视化分析的得出以下结论:

1.2016年-2019年电影数量逐渐增大,2019年达到最大值,从2020年开始迅速逐年下降。

2.发布电影数量最多的国家是中国和美国。

3.电影类型最多的剧情片。

4.电影片长呈正态分布,且片长和评分呈正相关关系。


最后,给大家分享一份Python学习资料,都是我自己学习时整理的,希望可以帮到你!Python是一门非常不错的编程语言,就业前景好、薪资待遇高。可以应用于爬虫、web前端开发、后端开发、数据分析、人工智能、自动化测试等领域。即使你不想出去上班,也可以利用Python在家做兼职赚钱(比如爬取客户需要的数据、量化交易、代写程序等)。 是不是非常不错呢?

资料包括:Python安装包+激活码、Python web开发、Python爬虫、Python数据分析、Python自动化测试、人工智能等学习教程。0基础小白也能听懂、看懂!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述
二、Python学习软件

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述
三、Python入门学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述
四、Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述
五、Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述
六、副业兼职
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
七、资料领取
由于篇幅有限,很多资料图片放不上来。需要的小伙伴可以微信扫描下方CSDN官方认证二维码领取(免费免费免费)

你可能感兴趣的:(python,数据分析,开发语言,数据挖掘,学习)