原理
线程池简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态,当有新的任务进来,从线程池中取出一个空闲的线程处理任务,然后当任务处理完成之后,该线程被重新放回到线程池中,供其他的任务使用,当线程池中的线程都在处理任务时,就没有空闲线程供使用,此时,若有新的任务产生,只能等待线程池中有线程结束任务空闲才能执行
为什么使用线程池
因为线程的创建、和清理都是需要耗费系统资源的。假设某个线程的创建、运行和销毁的时间分别为T1、T2、T3,当T1+T3的时间相对于T2不可忽略时,线程池的就有必要引入了,尤其是处理数百万级的高并发处理时。
线程池提升了多线程程序的性能,因为线程池里面的线程都是现成的而且能够重复使用,我们不需要临时创建大量线程,然后在任务结束时又销毁大量线程。一个理想的线程池能够合理地动态调节池内线程数量,既不会因为线程过少而导致大量任务堆积,也不会因为线程过多了而增加额外的系统开销。
优点
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。
生产者与消费者模型
线程池的原理是一个非常典型的生产者消费者同步问题。线程池至少有两个主要动作,一个是主程序不定时地向线程池添加任务,另一个是线程池里的线程领取任务去执行。
主程序执行入队操作,把任务添加到一个队列里面;池子里的多个工作线程共同对这个队列试图执行出队操作,这里要保证同一时刻只有一个线程出队成功,抢夺到这个任务,其他线程继续共同试图出队抢夺下一个任务。所以在实现线程池之前,我们需要一个队列。
这里的生产者就是主程序,生产任务(增加任务),消费者就是工作线程,消费任务(执行、减少任务)。因为这里涉及到多个线程同时访问一个队列的问题,所以我们需要互斥锁来保护队列,同时还需要条件变量来处理主线程通知任务到达、工作线程抢夺任务的问题。
//condition.h
#ifndef _CONDITION_H_
#define _CONDITION_H_
#include
//封装一个互斥量和条件变量作为状态
typedef struct condition
{
pthread_mutex_t pmutex;
pthread_cond_t pcond;
}condition_t;
//对状态的操作函数
int condition_init(condition_t *cond);
int condition_lock(condition_t *cond);
int condition_unlock(condition_t *cond);
int condition_wait(condition_t *cond);
int condition_timedwait(condition_t *cond, const struct timespec *abstime);
int condition_signal(condition_t* cond);
int condition_broadcast(condition_t *cond);
int condition_destroy(condition_t *cond);
#endif
//condition.c
#include "condition.h"
//初始化
int condition_init(condition_t *cond)
{
int status;
if((status = pthread_mutex_init(&cond->pmutex, NULL)))
return status;
if((status = pthread_cond_init(&cond->pcond, NULL)))
return status;
return 0;
}
//加锁
int condition_lock(condition_t *cond)
{
return pthread_mutex_lock(&cond->pmutex);
}
//解锁
int condition_unlock(condition_t *cond)
{
return pthread_mutex_unlock(&cond->pmutex);
}
//等待
int condition_wait(condition_t *cond)
{
return pthread_cond_wait(&cond->pcond, &cond->pmutex);
}
//固定时间等待
int condition_timedwait(condition_t *cond, const struct timespec *abstime)
{
return pthread_cond_timedwait(&cond->pcond, &cond->pmutex, abstime);
}
//唤醒一个睡眠线程
int condition_signal(condition_t* cond)
{
return pthread_cond_signal(&cond->pcond);
}
//唤醒所有睡眠线程
int condition_broadcast(condition_t *cond)
{
return pthread_cond_broadcast(&cond->pcond);
}
//释放
int condition_destroy(condition_t *cond)
{
int status;
if((status = pthread_mutex_destroy(&cond->pmutex)))
return status;
if((status = pthread_cond_destroy(&cond->pcond)))
return status;
return 0;
}
//threadpool.h
#ifndef _THREAD_POOL_H_
#define _THREAD_POOL_H_
//线程池头文件
#include "condition.h"
//封装线程池中的对象需要执行的任务对象
typedef struct task
{
void *(*run)(void *args); //函数指针,需要执行的任务
void *arg; //参数
struct task *next; //任务队列中下一个任务
}task_t;
//下面是线程池结构体
typedef struct threadpool
{
condition_t ready; //状态量
task_t *first; //任务队列中第一个任务
task_t *last; //任务队列中最后一个任务
int counter; //线程池中已有线程数
int idle; //线程池中空闲线程数
int max_threads; //线程池最大线程数
int quit; //是否退出标志
}threadpool_t;
//线程池初始化
void threadpool_init(threadpool_t *pool, int threads);
//往线程池中加入任务
void threadpool_add_task(threadpool_t *pool, void *(*run)(void *arg), void *arg);
//摧毁线程池
void threadpool_destroy(threadpool_t *pool);
#endif
//threadpool.c
#include "threadpool.h"
#include
#include
#include
#include
#include
//创建的线程执行
void *thread_routine(void *arg)
{
struct timespec abstime;
int timeout;
printf("thread %d is starting\n", (int)pthread_self());
threadpool_t *pool = (threadpool_t *)arg;
while(1)
{
timeout = 0;
//访问线程池之前需要加锁
condition_lock(&pool->ready);
//空闲
pool->idle++;
//等待队列有任务到来 或者 收到线程池销毁通知
while(pool->first == NULL && !pool->quit)
{
//否则线程阻塞等待
printf("thread %d is waiting\n", (int)pthread_self());
//获取从当前时间,并加上等待时间, 设置进程的超时睡眠时间
clock_gettime(CLOCK_REALTIME, &abstime);
abstime.tv_sec += 2;
int status;
status = condition_timedwait(&pool->ready, &abstime); //该函数会解锁,允许其他线程访问,当被唤醒时,加锁
if(status == ETIMEDOUT)
{
printf("thread %d wait timed out\n", (int)pthread_self());
timeout = 1;
break;
}
}
pool->idle--;
if(pool->first != NULL)
{
//取出等待队列最前的任务,移除任务,并执行任务
task_t *t = pool->first;
pool->first = t->next;
//由于任务执行需要消耗时间,先解锁让其他线程访问线程池
condition_unlock(&pool->ready);
//执行任务
t->run(t->arg);
//执行完任务释放内存
free(t);
//重新加锁
condition_lock(&pool->ready);
}
//退出线程池
if(pool->quit && pool->first == NULL)
{
pool->counter--;//当前工作的线程数-1
//若线程池中没有线程,通知等待线程(主线程)全部任务已经完成
if(pool->counter == 0)
{
condition_signal(&pool->ready);
}
condition_unlock(&pool->ready);
break;
}
//超时,跳出销毁线程
if(timeout == 1)
{
pool->counter--;//当前工作的线程数-1
condition_unlock(&pool->ready);
break;
}
condition_unlock(&pool->ready);
}
printf("thread %d is exiting\n", (int)pthread_self());
return NULL;
}
//线程池初始化
void threadpool_init(threadpool_t *pool, int threads)
{
condition_init(&pool->ready);
pool->first = NULL;
pool->last =NULL;
pool->counter =0;
pool->idle =0;
pool->max_threads = threads;
pool->quit =0;
}
//增加一个任务到线程池
void threadpool_add_task(threadpool_t *pool, void *(*run)(void *arg), void *arg)
{
//产生一个新的任务
task_t *newtask = (task_t *)malloc(sizeof(task_t));
newtask->run = run;
newtask->arg = arg;
newtask->next=NULL;//新加的任务放在队列尾端
//线程池的状态被多个线程共享,操作前需要加锁
condition_lock(&pool->ready);
if(pool->first == NULL)//第一个任务加入
{
pool->first = newtask;
}
else
{
pool->last->next = newtask;
}
pool->last = newtask; //队列尾指向新加入的线程
//线程池中有线程空闲,唤醒
if(pool->idle > 0)
{
condition_signal(&pool->ready);
}
//当前线程池中线程个数没有达到设定的最大值,创建一个新的线程
else if(pool->counter < pool->max_threads)
{
pthread_t tid;
pthread_create(&tid, NULL, thread_routine, pool);
pool->counter++;
}
//结束,访问
condition_unlock(&pool->ready);
}
//线程池销毁
void threadpool_destroy(threadpool_t *pool)
{
//如果已经调用销毁,直接返回
if(pool->quit)
{
return;
}
//加锁
condition_lock(&pool->ready);
//设置销毁标记为1
pool->quit = 1;
//线程池中线程个数大于0
if(pool->counter > 0)
{
//对于等待的线程,发送信号唤醒
if(pool->idle > 0)
{
condition_broadcast(&pool->ready);
}
//正在执行任务的线程,等待他们结束任务
while(pool->counter)
{
condition_wait(&pool->ready);
}
}
condition_unlock(&pool->ready);
condition_destroy(&pool->ready);
}
//main.c
#include "threadpool.h"
#include
#include
#include
void* mytask(void *arg)
{
printf("thread %d is working on task %d\n", (int)pthread_self(), *(int*)arg);
sleep(1);
free(arg);
return NULL;
}
//测试代码
int main(void)
{
threadpool_t pool;
//初始化线程池,最多三个线程
threadpool_init(&pool, 3);
int i;
//创建十个任务
for(i=0; i < 10; i++)
{
int *arg = (int*)malloc(sizeof(int));
*arg = i;
threadpool_add_task(&pool, mytask, arg);
}
threadpool_destroy(&pool);
return 0;
}
注:pro文件添加LIBS += -lpthread
转载链接,附另一Github源码
//thread_pool.h
#ifndef __THREAD_POOL_H
#define __THREAD_POOL_H
#include
#include
#include
using namespace std;
/*执行任务的类:设置任务数据并执行*/
class CTask
{
protected:
string m_strTaskName; //任务的名称
void* m_ptrData; //要执行的任务的具体数据
public:
CTask() = default;
CTask(string &taskName): m_strTaskName(taskName), m_ptrData(NULL) {}
virtual int Run() = 0;
void setData(void* data); //设置任务数据
virtual ~CTask() {}
};
/*线程池管理类*/
class CThreadPool
{
private:
static vector m_vecTaskList; //任务列表
static bool shutdown; //线程退出标志
int m_iThreadNum; //线程池中启动的线程数
pthread_t *pthread_id;
static pthread_mutex_t m_pthreadMutex; //线程同步锁
static pthread_cond_t m_pthreadCond; //线程同步条件变量
protected:
static void* ThreadFunc(void *threadData); //新线程的线程回调函数
static int MoveToIdle(pthread_t tid); //线程执行结束后,把自己放入空闲线程中
static int MoveToBusy(pthread_t tid); //移入到忙碌线程中去
int Create(); //创建线程池中的线程
public:
CThreadPool(int threadNum);
int AddTask(CTask *task); //把任务添加到任务队列中
int StopAll(); //使线程池中的所有线程退出
int getTaskSize(); //获取当前任务队列中的任务数
};
#endif
//thread_pool.cpp
#include "thread_pool.h"
#include
void CTask::setData(void* data)
{
m_ptrData = data;
}
//静态成员初始化
vector CThreadPool::m_vecTaskList;
bool CThreadPool::shutdown = false;
pthread_mutex_t CThreadPool::m_pthreadMutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t CThreadPool::m_pthreadCond = PTHREAD_COND_INITIALIZER;
//线程管理类构造函数
CThreadPool::CThreadPool(int threadNum)
{
this->m_iThreadNum = threadNum;
printf("I will create %d threads.\n", threadNum);
Create();
}
//线程回调函数
void* CThreadPool::ThreadFunc(void* threadData)
{
pthread_t tid = pthread_self();
while(1)
{
pthread_mutex_lock(&m_pthreadMutex);
//如果队列为空,等待新任务进入任务队列
while(m_vecTaskList.size() == 0 && !shutdown)
pthread_cond_wait(&m_pthreadCond, &m_pthreadMutex);
//关闭线程
if(shutdown)
{
pthread_mutex_unlock(&m_pthreadMutex);
printf("[tid: %lu]\texit\n", pthread_self());
pthread_exit(NULL);
}
printf("[tid: %lu]\trun: ", tid);
vector ::iterator iter = m_vecTaskList.begin();
//取出一个任务并处理之
CTask* task = *iter;
if(iter != m_vecTaskList.end())
{
task = *iter;
m_vecTaskList.erase(iter);
}
pthread_mutex_unlock(&m_pthreadMutex);
task->Run(); //执行任务
printf("[tid: %lu]\tidle\n", tid);
}
return (void*)0;
}
//往任务队列里添加任务并发出线程同步信号
int CThreadPool::AddTask(CTask *task)
{
pthread_mutex_lock(&m_pthreadMutex);
m_vecTaskList.push_back(task);
pthread_mutex_unlock(&m_pthreadMutex);
pthread_cond_signal(&m_pthreadCond);
return 0;
}
//创建线程
int CThreadPool::Create()
{
pthread_id = new pthread_t[m_iThreadNum];
for(int i = 0; i < m_iThreadNum; i++)
pthread_create(&pthread_id[i], NULL, ThreadFunc, NULL);
return 0;
}
//停止所有线程
int CThreadPool::StopAll()
{
//避免重复调用
if(shutdown)
return -1;
printf("Now I will end all threads!\n\n");
//唤醒所有等待进程,线程池也要销毁了
shutdown = true;
pthread_cond_broadcast(&m_pthreadCond);
//清楚僵尸
for(int i = 0; i < m_iThreadNum; i++)
pthread_join(pthread_id[i], NULL);
delete[] pthread_id;
pthread_id = NULL;
//销毁互斥量和条件变量
pthread_mutex_destroy(&m_pthreadMutex);
pthread_cond_destroy(&m_pthreadCond);
return 0;
}
//获取当前队列中的任务数
int CThreadPool::getTaskSize()
{
return m_vecTaskList.size();
}
//main.cpp
#include "thread_pool.h"
#include
#include
#include
class CMyTask: public CTask
{
public:
CMyTask() = default;
int Run()
{
printf("%s\n", (char*)m_ptrData);
int x = rand()%4 + 1;
sleep(x);
return 0;
}
~CMyTask() {}
};
int main()
{
CMyTask taskObj;
char szTmp[] = "hello!";
taskObj.setData((void*)szTmp);
CThreadPool threadpool(5); //线程池大小为5
for(int i = 0; i < 10; i++)
threadpool.AddTask(&taskObj);
while(1)
{
printf("There are still %d tasks need to handle\n", threadpool.getTaskSize());
//任务队列已没有任务了
if(threadpool.getTaskSize()==0) {
//清除线程池
if(threadpool.StopAll() == -1) {
printf("Thread pool clear, exit.\n");
exit(0);
}
}
sleep(2);
printf("2 seconds later...\n");
}
return 0;
}
转载链接
c++11实现线程池
注意在.pro文件中需要添加
QMAKE_CXXFLAGS += -std=c++11 -pthread
LIBS += -pthread