一、什么是水平分库
将一张表水平切分到多个库中
1.1分片原则
- 1.需要分片的表是少数的
- 2.能不切分尽量不要切分
- 3.日志表可以采取归档方式
- 4.选择合适的切分规则和分片建,确保数据分片均匀,否则依然存在性能瓶颈
- 5.尽量避免跨分片join操作,保证关联操作表在同一分片
1.2分片后如何处理查询
- 1、根据简单分片规则,对分片键进行路由到正确的后端物理数据库
-
2、如果不是使用分片键的话,将会遍历后端数据库,极大消耗性能
二、水平切分步骤
2.1根据业务状态确定要进行水平切分的表
读写频繁,访问量非常大的表才需要切分,一般是订单表
如何选择分片键
- 1、尽可能的比较均匀分布数据到各个节点上,自增长主键并不是很好的选择,因为不会用于查询
- 2、业务字段是最频繁的或者最重要的查询条件
2.2分析业务模型选择分片键及分片算法
一般分片键选择的是频繁作为查询的字段,关键是能保证分片后的数据分布均匀,常用简单取模算法
- 对订单相关表进行水平切分
- 不仅仅是订单表,经常与订单表关联查询的表也需要一并分片,避免跨分片查询,大表不适合作为全局表
- 订单号,可以保证分片均匀,但是实际业务很少根据订单号来查询
- 下单人ID,业务查询更多,更适合,但是分片并不均匀,但不严重,值得考虑
- 采用简单取模分片算法,可以保证数据尽可能均匀
2.3适用mycat部署分片集群
- 1、使用schema.xml配置逻辑库及逻辑表
- 2.使用rule.xml配置分片表的分片规则
customer_id
mod-long
4
- 3、验证
# 现在逻辑库上进行查看,此时是没有数据的
# 需要提前建库建表,否则报错表不存在
[email protected] 00:26: [imooc_db]> select * from order_master;
Empty set (0.08 sec)
# 在逻辑库imooc_db上插入5条数据,正常是orderdb02 2条数据(节点索引顺序为1),其他各1条数据
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70005,90005,'yzw5',5,5,5,'address1',1,20);
# truncate table报错
[email protected] 10:51: [imooc_db]> truncate table order_master;
ERROR 1105 (HY000): DROP command denied to user 'bm_mycat'@'172.16.10.142' for table 'order_master'
# 逻辑库查看插入结果
[email protected] 10:50: [imooc_db]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 80005 | 70002 | 90002 |
| 80005 | 70003 | 90003 |
| 80005 | 70004 | 90004 |
| 80006 | 70001 | 90001 |
| 80007 | 70005 | 90005 |
+----------+----------+-------------+
5 rows in set (0.00 sec)
# 在物理库查看是否有这4条数据,验证成功
root@localhost 10:52: [orderdb01]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 80005 | 70004 | 90004 |
+----------+----------+-------------+
1 row in set (0.00 sec)
root@localhost 10:52: [orderdb02]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 80006 | 70001 | 90001 |
| 80007 | 70005 | 90005 |
+----------+----------+-------------+
2 rows in set (0.00 sec)
root@localhost 10:05: [orderdb03]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 80005 | 70002 | 90002 |
+----------+----------+-------------+
1 row in set (0.00 sec)
root@localhost 10:52: [orderdb04]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 80005 | 70003 | 90003 |
+----------+----------+-------------+
1 row in set (0.00 sec)
- 4、使用server.xml配置访问权限
#配置用户登录
2.4测试分片集群,采用应用端双写方式进行
2.5业务及数据迁移
三、全局自增ID
- 分片表中的自增ID在逻辑表中有重复
- 第三方给ID或者使用mycat自增ID
3.1全局自增ID方法
- 1、本地文件方式:适用服务器本地磁盘的方式
- 2、数据库方式:适用数据库存储的方式(自增主键方式)
- 3、本地时间戳方式:适用时间戳
- 4、分布式zookeeper生成ID
3.2本地文件全局ID
- 优点:本地加载,读取速度快,配置简单
- 缺点:集群部署无法使用,不同的mycat无法保证id唯一,使mycat变成了有状态的中间件
配置方法
- 1.server.xml增加属性
- 3.插入数据
# mycat restart
# delete from order_master;
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797763829760,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797763829761,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797763829762,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797768024064,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797768024065,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 此时逻辑表中的order_id唯一
[email protected] 11:35: [imooc_db]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 10004 | 70004 | 90004 |
| 10003 | 70003 | 90003 |
| 10001 | 70001 | 90001 |
| 10005 | 70005 | 90005 |
| 10002 | 70002 | 90002 |
+----------+----------+-------------+
5 rows in set (0.01 sec)
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797772218368,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797772218369,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797772218370,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797772218371,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797772218372,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 此时逻辑表中的order_id依然是唯一,但是ID值使用的是自定义表自增属性的值
[email protected] 11:48: [imooc_db]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 1009 | 70003 | 90003 |
| 1008 | 70002 | 90002 |
| 1007 | 70001 | 90001 |
| 1011 | 70005 | 90005 |
| 1010 | 70004 | 90004 |
+----------+----------+-------------+
5 rows in set (0.00 sec)
# 不指定自增字段插入
# 逻辑表必须增加自增属性,否则不指定自增字段插入则使用分片表本身自增id
#
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70005,90005,'yzw5',5,5,5,'address1',1,20);
[email protected] 11:58: [imooc_db]> select order_id,order_sn,customer_id from order_master;
+----------+----------+-------------+
| order_id | order_sn | customer_id |
+----------+----------+-------------+
| 1001 | 70001 | 90001 |
| 1005 | 70005 | 90005 |
| 1003 | 70003 | 90003 |
| 1004 | 70004 | 90004 |
| 1002 | 70002 | 90002 |
+----------+----------+-------------+
5 rows in set (0.01 sec)
3.3数据库方式
- 优点:mycat重启后,sequence值不会被初始化,因为从数据库中取,每次取完按自增步长增加
- 缺点:sequence数据库主从切换后,存在mycat适用缓存序列号,可能存在ID重复风险,可以手动增加步长避免
配置方法
- 1.server.xml增加属性
1
- 2.sequence_db_conf.properties
#sequence stored in datanode
GLOBAL=dn_test
ORDER_MASTER=dn_test
datanode必须要mycat能访问的数据库,并不一定需要在分片表的数据库中
3.schema.xml增加主机节点和数据节点,让mycat能访问上面配置的数据节点
4.在对应节点的数据库中增加函数和表,用户必须授予表、函数、存储过程的访问权限
# 需要全局ID的表明需要写入表中,大写
INSERT INTO mycat_sequence values('ORDER_MASTER', 1, 100);
root@master 11:48: [test]> select * from mycat_sequence;
+--------------+---------------+-----------+
| NAME | current_value | increment |
+--------------+---------------+-----------+
| GLOBAL | 100000 | 100 |
| ORDER_MASTER | 1 | 100 |
+--------------+---------------+-----------+
2 rows in set (0.00 sec)
- 5.schema.xml增加配置,适用全局自增IDautoIncrement="true"
- 6.在逻辑库中插入数据
# 适用ID表里面的全局ID插入
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797780606976,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797780606977,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797780606978,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797784801280,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797784801281,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 使用ID表里面的对应表ID插入
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797784801282,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797784801283,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797788995584,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797788995585,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797788995586,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 不指定id列,效果同上
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70005,90005,'yzw5',5,5,5,'address1',1,20);
3.4本地时间戳方式
ID= 64 位二进制 (42(毫秒)+5(机器 ID)+5(业务编码)+12(重复累加)
- 优点:与mycat无关,跟时间有关系
- 缺点:字段最大长度必须大于等于18,int无法满足
配置方法
- 1.server.xml增加属性
2
- 2.sequence_time_conf.properties
#sequence depend on TIME
WORKID=01
DATAACENTERID=01
# 0-31任意整数
- 3.在对应节点的数据库中增加函数和表,用户必须授予表、函数、存储过程的访问权限
# 需要全局ID的表明需要写入表中,大写
INSERT INTO mycat_sequence values('ORDER_MASTER', 1, 100);
root@master 11:48: [test]> select * from mycat_sequence;
+--------------+---------------+-----------+
| NAME | current_value | increment |
+--------------+---------------+-----------+
| GLOBAL | 100000 | 100 |
| ORDER_MASTER | 1 | 100 |
+--------------+---------------+-----------+
2 rows in set (0.00 sec)
- 4.schema.xml增加配置,适用全局自增IDautoIncrement="true"
- 5.在逻辑库中插入数据
# int无法满足
ERROR 1264 (22003): Out of range value for column 'order_id' at row
[email protected] 12:32: [imooc_db]> select 1680369797793189888;
+---------------------+
| 1025962766269288448 |
+---------------------+
| 1025962766269288448 |
+---------------------+
1 row in set (0.00 sec)
[email protected] 12:32: [imooc_db]> select 1680369797793189889;
+---------------------+
| 1025962827724230656 |
+---------------------+
| 1025962827724230656 |
+---------------------+
1 row in set (0.00 sec)
1
# 适用ID表里面的全局ID插入
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797793189890,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797797384192,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797797384193,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797797384194,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797797384195,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 使用ID表里面的对应表ID插入
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797801578496,70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797801578497,70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797801578498,70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797805772800,70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_id,order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values( 1680369797805772801,70005,90005,'yzw5',5,5,5,'address1',1,20);
# 不指定id列,效果同上
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70005,90005,'yzw5',5,5,5,'address1',1,20);
select order_id,order_sn,customer_id from order_master;
3.5分布式zookeeper生成ID 未测试,1.5没有默认配置文件
基于ZK 与本地配置的分布式ID 生成器(可以通过ZK 获取集群(机房)唯一InstanceID,也可以通过配置文件配置InstanceID)ID 结构:long 64 位,ID 最大可占63 位
current time millis(微秒时间戳38 位,可以使用17 年)
instanceId(实例ID,可以通过ZK 或者配置文件获取,5 位,也就是十进制0-31)
threadId(线程ID,9 位)
increment(自增,6 位)
一共63 位,可以承受单机房单机器单线程1000*(2^6)=640000 的并发。
- 优点:无悲观锁,无强竞争,吞吐量更高
- 缺点:对zookeeper集群的要求增加。
配置方法
- 1.server.xml增加属性
3
- 2.sequence_distributed_conf.properties
INSTANCEID=01
CLUSTERID=01
- 3.在对应节点的数据库中增加函数和表,用户必须授予表、函数、存储过程的访问权限
# 需要全局ID的表明需要写入表中,大写
INSERT INTO mycat_sequence values('ORDER_MASTER', 1, 100);
root@master 11:48: [test]> select * from mycat_sequence;
+--------------+---------------+-----------+
| NAME | current_value | increment |
+--------------+---------------+-----------+
| GLOBAL | 100000 | 100 |
| ORDER_MASTER | 1 | 100 |
+--------------+---------------+-----------+
2 rows in set (0.00 sec)
- 5.schema.xml增加配置,适用全局自增IDautoIncrement="true"
- 6.在逻辑库中插入数据
四.ER关系
- 跨分片查询存在跨节点问题
[email protected] 13:55: [imooc_db]> select * from order_master m join order_detail o on m.order_id=o.order_id;
ERROR 1064 (HY000): invalid route in sql, multi tables found but datanode has no intersection sql:select * from order_master m join order_detail o on m.order_id=o.order_id
- 根据ER关系,也需要对order_detail这张表进行分片
4.1配置步骤
- 1.在原先order_master所在4个分配数据库(orderdb01/02/03/04)中建立order_detail表结构
CREATE TABLE `order_detail` (
`order_detail_id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键ID,订单详情表ID',
`order_id` int(10) unsigned NOT NULL COMMENT '订单表ID',
`product_id` int(10) unsigned NOT NULL COMMENT '订单商品ID',
`product_name` varchar(50) NOT NULL COMMENT '商品名称',
`product_cnt` int(11) NOT NULL DEFAULT '1' COMMENT '购买商品数量',
`product_price` decimal(8,2) NOT NULL COMMENT '购买商品单价',
`average_cost` decimal(8,2) NOT NULL DEFAULT '0.00' COMMENT '平均成本价格',
`weight` float DEFAULT NULL COMMENT '商品重量',
`fee_money` decimal(8,2) NOT NULL DEFAULT '0.00' COMMENT '优惠分摊金额',
`w_id` int(10) unsigned NOT NULL COMMENT '仓库ID',
`modified_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '最后修改时间',
PRIMARY KEY (`order_detail_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='订单详情表';
- 2.schema.xml将全局分片表进行ER分片,在父表中增加子表信息
- 3.配置表order_detail全局自增ID(使用数据库方式)
# server.xml
# sequence_db_conf.properties增加order_detail自增ID
#sequence stored in datanode
GLOBAL=dn_test
ORDER_MASTER=dn_test
ORDER_DETAIL=dn_test
# 数据库中增加分片表信息
insert into mycat_sequence values('ORDER_DETAIL',1,1);
- 4.插入数据
# 先插入order_master
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70001,90001,'yzw1',1,1,1,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70002,90002,'yzw2',2,2,2,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70003,90003,'yzw3',3,3,3,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70004,90004,'yzw4',4,4,4,'address1',1,20);
insert into order_master(order_sn,customer_id,shipping_user,province,city,district,address,payment_method,order_money) values(70005,90005,'yzw5',5,5,5,'address1',1,20);
[email protected] 14:46: [imooc_db]> select order_sn,customer_id,order_id from order_master;
+----------+-------------+----------+
| order_sn | customer_id | order_id |
+----------+-------------+----------+
| 70005 | 90005 | 5 |
| 70001 | 90001 | 6 |
| 70005 | 90005 | 10 |
| 70004 | 90004 | 4 |
| 70004 | 90004 | 9 |
| 70003 | 90003 | 3 |
| 70003 | 90003 | 8 |
| 70002 | 90002 | 2 |
| 70002 | 90002 | 7 |
+----------+-------------+----------+
9 rows in set (0.00 sec)
# 根据order_id插入order_detail
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797809967104,2,12,'商品2',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797809967105,3,13,'商品3',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797814161408,4,14,'商品4',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797814161409,5,15,'商品5',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797814161410,6,16,'商品6',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797814161411,7,17,'商品7',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797818355712,8,18,'商品8',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797818355713,9,19,'商品9',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797818355714,10,20,'商品10',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797822550016,5,21,'商品11',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797822550017,6,12,'商品2',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797822550018,8,12,'商品2',1,22.2,12,1,10,2);
insert into order_detail(order_detail_id,order_id,product_id,product_name,product_cnt,product_price,average_cost,weight,fee_money,w_id) values( 1680369797826744320,8,12,'商品2',1,22.2,12,1,10,2);
- 5.此时再进行分片关联查询验证数据
select m.order_id,o.order_detail_id,o.product_id,o.product_name from order_master m join order_detail o on m.order_id=o.order_id;
+----------+-----------------+------------+--------------+
| order_id | order_detail_id | product_id | product_name |
+----------+-----------------+------------+--------------+
| 3 | 4 | 13 | 商品3 |
| 8 | 9 | 18 | 商品8 |
| 8 | 14 | 12 | 商品2 |
| 8 | 15 | 12 | 商品2 |
| 2 | 3 | 12 | 商品2 |
| 7 | 8 | 17 | 商品7 |
| 4 | 5 | 14 | 商品4 |
| 9 | 10 | 19 | 商品9 |
| 5 | 6 | 15 | 商品5 |
| 6 | 7 | 16 | 商品6 |
| 10 | 11 | 20 | 商品10 |
| 5 | 12 | 21 | 商品11 |
| 6 | 13 | 12 | 商品2 |
+----------+-----------------+------------+--------------+
13 rows in set (0.00 sec)
- 6.在其中一个分片上可以验证,order_id一致的表落在同一个分片
root@localhost 15:05: [orderdb02]> select order_sn,customer_id,order_id,mod(customer_id,4) from order_master;
+----------+-------------+----------+
| order_sn | customer_id | order_id |
+----------+-------------+----------+
| 70005 | 90005 | 5 |
| 70001 | 90001 | 6 |
| 70005 | 90005 | 10 |
+----------+-------------+----------+
3 rows in set (0.00 sec)
root@localhost 15:06: [orderdb02]> select order_detail_id,product_id,order_id from order_detail;
+-----------------+------------+----------+
| order_detail_id | product_id | order_id |
+-----------------+------------+----------+
| 6 | 15 | 5 |
| 7 | 16 | 6 |
| 11 | 20 | 10 |
| 12 | 21 | 5 |
| 13 | 12 | 6 |
+-----------------+------------+----------+
5 rows in set (0.00 sec)
五、MyCat的其他常用功能
1、MyCat的SQL拦截器
SQL拦截是一个比较有用的高级技巧,用户可以写一个java类,将传入MyCAT的SQL进行改写然后交给Mycat去执行,此技巧可以完成如下一些特殊功能:
- 捕获和记录某些特殊的SQL
- 记录sql查找异常
- 出于性能优化的考虑,改写SQL,比如改变查询条件的顺序或增加分页限制
- 将某些Select SQL强制设置为Read 模式,走读写分离(很多事务框架很难剥离事务中的Select SQL
- 后期Mycat智能优化,拦截所有sql 做智能分析,自动监控节点负载,自动优化路由,提供数据库优化建议
SQL拦截的原理是在路由之前拦截SQL,然后做其他处理,完了之后再做路由,执行,如下图所示:
默认的拦截器实现了Mysql转义字符的过滤转换,非默认拦截器只有一个拦截记录sql的拦截器。
默认SQL拦截器:
配置:
org.opencloudb.interceptor.impl.DefaultSqlInterceptor
源码:
/**
* escape mysql escape letter
*/
@Override
public String interceptSQL(String sql, int sqlType) {
if (sqlType == ServerParse.UPDATE || sqlType == ServerParse.INSERT||
sqlType == ServerParse.SELECT||sqlType == ServerParse.DELETE) {
return sql.replace("\\'", "''"); }
else {
return sql;
}
}
}
配置server.xml
# 1.5可用
org.opencloudb.interceptor.impl.StatisticsSqlInterceptor
UPDATE,DELETE,INSERT,SELECT
/tmp/sql.txt
# 1.6可用
io.mycat.server.interceptor.impl.StatisticsSqlInterceptor
UPDATE,DELETE,INSERT,SELECT
/tmp/sql.txt
sqlInterceptorType: 拦截sql类型
sqlInterceptorFile: sql保存文件路径
注意:捕获记录sql拦截器的配置只有1.4及其以后可用,1.3无本拦截。
如果需要实现自己的sql拦截,只需要将配置类改为自己配置即可:
- 1、定义自定义类 implements SQLInterceptor ,然后改写sql后返回。
- 2、将自己实现的类放入catlet 目录,可以为class或jar。
- 3、配置配置文件:
org.opencloudb.interceptor.impl.自定义class
测试
# mycat restart
[email protected] 15:39: [imooc_db]> select order_sn,order_id,customer_id from order_master limit 1;
+----------+----------+-------------+
| order_sn | order_id | customer_id |
+----------+----------+-------------+
| 70005 | 5 | 90005 |
+----------+----------+-------------+
1 row in set (0.01 sec)
[email protected] 15:40: [imooc_db]> delete from order_master where order_id=5;
Query OK, 1 row affected (0.03 sec)
文件名会带日期
sql2020-01-19.txt
2、mycat sql防火墙
- 统一控制哪些用户可以通过哪些主机访问后端数据库
- 统一屏蔽一些SQL语句,加强安全控制(如没有条件的delete语句等)
server.xml文件
- firewall标签用来定义防火墙
- firewall下whitehost标签用来定义 IP白名单
- blacklist用来定义 SQL黑名单
#ip 白名单 用户对应的可以访问的 ip 地址
false #黑名单允许的 权限 后面为默认
黑名单拦截明细配置
配置项 | 缺省值 | 描述 | |
---|---|---|---|
selelctAllow | true | 是否允许执行 SELECT 语句 | |
selectAllColumnAllow | true | 是否允许执行 SELECT * FROM T 这样的语句。如果设置为 false,不允许执行 select * from t,但可以select * from (select id, name from t) a。这个选项是防御程序通过调用 select * 获得数据表的结构信息。 | |
selectIntoAllow | true | SELECT 查询中是否允许 INTO 字句 | |
deleteAllow | true | 是否允许执行 DELETE 语句 | |
updateAllow | true | 是否允许执行 UPDATE 语句 | |
insertAllow | true | 是否允许执行 INSERT 语句 | |
replaceAllow | true | 是否允许执行 REPLACE 语句 | |
mergeAllow | true | 是否允许执行 MERGE 语句,这个只在 Oracle 中有用 | |
callAllow | true | 是否允许通过 jdbc 的 call 语法调用存储过程 | |
setAllow | true | 是否允许使用 SET 语法 | |
truncateAllow | true | truncate 语句是危险,缺省打开,若需要自行关闭 | |
createTableAllow | true | 是否允许创建表 | |
alterTableAllow | true | 是否允许执行 Alter Table 语句 | |
dropTableAllow | true | 是否允许修改表 | |
commentAllow | false | 是否允许语句中存在注释,Oracle 的用户不用担心,Wall 能够识别 hints和注释的区别 | |
noneBaseStatementAllow | false | 是否允许非以上基本语句的其他语句,缺省关闭,通过这个选项就能够屏蔽 DDL | |
multiStatementAllow | false | 是否允许一次执行多条语句,缺省关闭 | |
useAllow | true | 是否允许执行 mysql 的 use 语句,缺省打开 | |
describeAllow | true | 是否允许执行 mysql 的 describe 语句,缺省打开 | |
showAllow | true | 是否允许执行 mysql 的 show 语句,缺省打开 | |
commitAllow | true | 是否允许执行 commit 操作 | |
rollbackAllow | true | 是否允许执行 roll back 操作 | |
##如果把 selectIntoAllow、deleteAllow、updateAllow、insertAllow、mergeAllow 都设置为 false,这就是一个只读数据源了。## | |||
拦截配置-永真条件 | |||
selectWhereAlwayTrueCheck | true | 检查 SELECT 语句的 WHERE 子句是否是一个永真条件 | |
selectHavingAlwayTrueCheck | true | 检查 SELECT 语句的 HAVING 子句是否是一个永真条件 | |
deleteWhereAlwayTrueCheck | true | 检查 DELETE 语句的 WHERE 子句是否是一个永真条件 | |
deleteWhereNoneCheck | false | 检查 DELETE 语句是否无 where 条件,这是有风险的,但不是 SQL 注入类型的风险 | |
updateWhereAlayTrueCheck | true | 检查 UPDATE 语句的 WHERE 子句是否是一个永真条件 | |
updateWhereNoneCheck | false | 检查 UPDATE 语句是否无 where 条件,这是有风险的,但不是SQL 注入类型的风险 | |
conditionAndAlwayTrueAllow | false | 检查查询条件(WHERE/HAVING 子句)中是否包含 AND 永真条件 | |
conditionAndAlwayFalseAllow | false | 检查查询条件(WHERE/HAVING 子句)中是否包含 AND 永假条件 | |
conditionLikeTrueAllow | true | 检查查询条件(WHERE/HAVING 子句)中是否包含 LIKE 永真条件 | |
其他拦截配置 | |||
selectIntoOutfileAllow | false | SELECT ... INTO OUTFILE 是否允许,这个是 mysql 注入攻击的常见手段,缺省是禁止的 | |
selectUnionCheck | true | 检测 SELECT UNION | |
selectMinusCheck | true | 检测 SELECT MINUS | |
selectExceptCheck | true | 检测 SELECT EXCEPT | |
selectIntersectCheck | true | 检测 SELECT INTERSECT | |
mustParameterized | false | 是否必须参数化,如果为 True,则不允许类似 WHERE ID = 1 这种不参数化的 SQL | |
strictSyntaxCheck | true | 是否进行严格的语法检测,Druid SQL Parser 在某些场景不能覆盖所有的SQL 语法,出现解析 SQL 出错,可以临时把这个选项设置为 false,同时把 SQL 反馈给 Druid 的开发者。 | |
conditionOpXorAllow | false | 查询条件中是否允许有 XOR 条件。XOR 不常用,很难判断永真或者永假,缺省不允许。 | |
conditionOpBitwseAllow | true | 查询条件中是否允许有"&"、"~"、" | "、"^"运算符。 |
conditionDoubleConstAllow | false | 查询条件中是否允许连续两个常量运算表达式 | |
minusAllow | true | 是否允许 SELECT * FROM A MINUS SELECT * FROM B 这样的语句 | |
intersectAllow | true | 是否允许 SELECT * FROM A INTERSECT SELECT * FROM B 这样的语句 | |
constArithmeticAllow | true | 拦截常量运算的条件,比如说 WHERE FID = 3 - 1,其中"3 - 1"是常量运算表达式。 | |
limitZeroAllow | false | 是否允许 limit 0 这样的语句 | |
禁用对象检测配置 | |||
tableCheck | true | 检测是否使用了禁用的表 | |
schemaCheck | true | 检测是否使用了禁用的 Schema | |
functionCheck | true | 检测是否使用了禁用的函数 | |
objectCheck | true | 检测是否使用了“禁用对对象” | |
variantCheck | true | 检测是否使用了“禁用的变量” | |
readOnlyTables | 空 | 指定的表只读,不能够在 SELECT INTO、DELETE、UPDATE、INSERT、MERGE 中作为"被修改表"出现 |
参考:
https://www.cnblogs.com/jenvid/p/10180461.html
https://blog.51cto.com/5660061/2391986?source=dra
https://www.cnblogs.com/jenvid/p/10180479.html
https://my.oschina.net/u/3420885/blog/1942388