无序消息也指普通的消息,Producer 只管发送消息,Consumer 只管接收消息,至于消息和消息之间的顺序并没有保证。
对于指定的一个 Topic,所有消息按照严格的先入先出(FIFO)的顺序进行发布和消费
比如 Producer 发送orderId 1,3,2 的消息, 那么 Consumer 也必须要按照 1,3,2 的顺序进行消费。
在实际开发有些场景中,并不需要消息完全按照完全按的先进先出,而是某些消息保证先进先出就可以了。
RocketMQ可以严格的保证消息有序,但这个顺序,不是全局顺序,只是队列(queue)顺序,要全局顺序只能一个队列。
message最终会存放在Queue中,如果一个Topic关联了4个Queue, 如果不指定消息往哪个队列里放,那么默认是平均分配消息到4个queue
所以需要保证同一个queue,存储在里面的message 是按照先进先出的原则
对于消费者集群来说, 讲过消费者C1和消费者C2顺序拿到消费后, 但是无法保证谁先消费结束
Rocket采用的是分段锁(分布式锁),它不是锁整个Broker而是锁里面的单个Queue
, 谁消费谁就控制锁的加锁和释放锁
全局顺序与分区顺序对比
Topic消息类型 | 支持事务消息 | 支持定时/延时消息 | 性能 |
---|---|---|---|
无序消息(普通、事务、定时/延时) | 是 | 是 | 最高 |
分区顺序消息 | 否 | 否 | 高 |
全局顺序消息 | 否 | 否 | 一般 |
发送方式对比
Topic消息类型 | 支持可靠同步发送 | 支持可靠异步发送 | 支持Oneway发送 |
---|---|---|---|
无序消息(普通、事务、定时/延时) | 是 | 是 | 是 |
分区顺序消息 | 是 | 否 | 否 |
全局顺序消息 | 是 | 否 | 否 |
注意事项
这里根据需要的值使用hash的方式进行消息粘滞
public class SelectorFactory {
/**
* 工厂模式获取MessageQueueSelector
*
* @param value
* @return
*/
public static MessageQueueSelector getMessageQueueSelector(String value) {
//如果value不为空使用hash选择器
if (StringUtils.isNotEmpty(value)) {
return new SelectMessageQueueByHash();
}
//如果value为空使用随机选择器
return new SelectMessageQueueByRandom();
}
}
@Component
public class MQProducer {
@Autowired
DefaultMQProducer defaultMQProducer;
/**
* 同步发送消息
* @param taxiBO
*/
public void send(TaxiBO taxiBO) {
if (null == taxiBO) {
return;
}
SendResult sendResult = null;
try {
//获取消息对象
Message message = RocketMQHelper.buildMessage(DispatchConstant.SEQ_TOPIC, taxiBO);
//根据区域编码获取队列选择器
MessageQueueSelector selector = SelectorFactory.getMessageQueueSelector(taxiBO.getAreaCode());
//发送同步消息
sendResult = defaultMQProducer.send(message, selector, taxiBO.getAreaCode(), 10000);
} catch (MQClientException e) {
e.printStackTrace();
} catch (RemotingException e) {
e.printStackTrace();
} catch (MQBrokerException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
if (null != sendResult) {
System.out.println(sendResult.toString());
}
}
}
消费者真正要达到消费顺序,需要分布式锁,所以这里需要将
MessageListenerOrderly
替换之前的MessageListenerConcurrently,因为它里面实现了分布式锁。
/**
* 消费消息
*/
public abstract class MQConsumeMessageListenerProcessor implements MessageListenerOrderly {
public static final Logger logger = LoggerFactory.getLogger(MQConsumeMessageListenerProcessor.class);
/**
* 消费有序消息
*
* @param list
* @param consumeOrderlyContext
* @return
*/
@Override
public ConsumeOrderlyStatus consumeMessage(List<MessageExt> list, ConsumeOrderlyContext consumeOrderlyContext) {
if (CollectionUtils.isEmpty(list)) {
logger.info("MQ接收消息为空,直接返回成功");
return ConsumeOrderlyStatus.SUCCESS;
}
//消费消息
for (MessageExt messageExt : list) {
try {
String topic = messageExt.getTopic();
String tags = messageExt.getTags();
String body = new String(messageExt.getBody(), "utf-8");
//调用具体消费流程
processMessage(topic, tags, body);
logger.info("MQ消息topic={}, tags={}, 消息内容={}", topic, tags, body);
} catch (Exception e) {
logger.error("获取MQ消息内容异常{}", e);
//暂停当前队列
return ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT;
}
}
// TODO 处理业务逻辑
return ConsumeOrderlyStatus.SUCCESS;
}
/**
* 处理消息
*
* @param body
*/
public abstract void processMessage(String topic, String tags, String body);
}
注意ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT
的使用
RocketMQ 的消息模型整体并不复杂,如下图所示:
一个Topic(消息主题)
可能对应多个实际的消息队列(MessgeQueue)
生产者投递策略就是讲如何将一个消息投递到不同的queue中
默认投递方式:基于
Queue队列
轮询算法投递
默认情况下,采用了最简单的轮询算法,这种算法有个很好的特性就是,保证每一个Queue队列
的消息投递数量尽可能均匀,算法如下所示:
/**
* 根据 TopicPublishInfo Topic发布信息对象中维护的index,每次选择队列时,都会递增
* 然后根据 index % queueSize 进行取余,达到轮询的效果
*
*/
public MessageQueue selectOneMessageQueue(final TopicPublishInfo tpInfo, final String lastBrokerName) {
return tpInfo.selectOneMessageQueue(lastBrokerName);
}
/**
* TopicPublishInfo Topic发布信息对象中
*/
public class TopicPublishInfo {
//基于线程上下文的计数递增,用于轮询目的
private volatile ThreadLocalIndex sendWhichQueue = new ThreadLocalIndex();
public MessageQueue selectOneMessageQueue(final String lastBrokerName) {
if (lastBrokerName == null) {
return selectOneMessageQueue();
} else {
int index = this.sendWhichQueue.getAndIncrement();
for (int i = 0; i < this.messageQueueList.size(); i++) {
//轮询计算
int pos = Math.abs(index++) % this.messageQueueList.size();
if (pos < 0)
pos = 0;
MessageQueue mq = this.messageQueueList.get(pos);
if (!mq.getBrokerName().equals(lastBrokerName)) {
return mq;
}
}
return selectOneMessageQueue();
}
}
public MessageQueue selectOneMessageQueue() {
int index = this.sendWhichQueue.getAndIncrement();
int pos = Math.abs(index) % this.messageQueueList.size();
if (pos < 0)
pos = 0;
return this.messageQueueList.get(pos);
}
}
在有些场景下,需要保证同类型消息投递和消费的顺序性。
例如,假设现在有TOPIC topicTest
,该 Topic下有4个Queue队列
,该Topic用于传递订单的状态变迁,假设订单有状态:未支付
、已支付
、发货中(处理中)
、发货成功
、发货失败
。
在时序上,生产者从时序上可以生成如下几个消息:
订单T0000001:未支付 --> 订单T0000001:已支付 --> 订单T0000001:发货中(处理中) --> 订单T0000001:发货失败
消息发送到MQ中之后,可能由于轮询投递的原因,消息在MQ的存储可能如下:
基于上述的情况,RockeMQ
采用了这种实现方案:对于相同订单号的消息,通过一定的策略,将其放置在一个 queue队列中
,然后消费者
再采用一定的策略(一个线程独立处理一个queue
,保证处理消息的顺序性),能够保证消费的顺序性
生产者在消息投递的过程中,使用了 MessageQueueSelector
作为队列选择的策略接口,其定义如下:
public interface MessageQueueSelector {
/**
* 根据消息体和参数,从一批消息队列中挑选出一个合适的消息队列
* @param mqs 待选择的MQ队列选择列表
* @param msg 待发送的消息体
* @param arg 附加参数
* @return 选择后的队列
*/
MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);
}
投递策略 | 策略实现类 | 说明 |
---|---|---|
随机分配策略 | SelectMessageQueueByRandom | 使用了简单的随机数选择算法 |
基于Hash分配策略 | SelectMessageQueueByHash | 根据附加参数的Hash值,按照消息队列列表的大小取余数,得到消息队列的index |
基于机器机房位置分配策略 | SelectMessageQueueByMachineRoom | 开源的版本没有具体的实现,基本的目的应该是机器的就近原则分配 |
RocketMQ对于消费者消费消息有两种形式:
BROADCASTING
:广播式消费,这种模式下,一个消息会被通知到每一个消费者
CLUSTERING
: 集群式消费,这种模式下,一个消息最多只会被投递到一个消费者
上进行消费 模式如下:对于使用了消费模式为
MessageModel.CLUSTERING
进行消费时, 并且队列数量>集群中消费者的数(消费者数量大于等于2)
, 指定消息分配算法
------------------------
注: 如果有一个队列数量小于集群中消费者的数量时, 多出的消费者将是空闲状态
RocketMQ定义了策略接口AllocateMessageQueueStrategy
,对于给定的消费者分组
,和消息队列列表
、消费者列表
,当前消费者
应当被分配到哪些queue队列
,定义如下:
/**
* 为消费者分配queue的策略算法接口
*/
public interface AllocateMessageQueueStrategy {
/**
* Allocating by consumer id
*
* @param consumerGroup 当前 consumer群组
* @param currentCID 当前consumer id
* @param mqAll 当前topic的所有queue实例引用
* @param cidAll 当前 consumer群组下所有的consumer id set集合
* @return 根据策略给当前consumer分配的queue列表
*/
List allocate(
final String consumerGroup,
final String currentCID,
final List mqAll,
final List cidAll
);
/**
* 算法名称
*
* @return The strategy name
*/
String getName();
}
相应地,RocketMQ提供了如下几种实现:
算法名称 | 含义 |
---|---|
AllocateMessageQueueAveragely | 平均分配算法 |
AllocateMessageQueueAveragelyByCircle | 基于环形平均分配算法 |
AllocateMachineRoomNearby | 商业版,基于机房临近原则算法 |
AllocateMessageQueueByMachineRoom | 商业版,基于机房分配算法 |
AllocateMessageQueueConsistentHash | 基于一致性hash算法 |
AllocateMessageQueueByConfig | 基于配置分配算法 |
为了讲述清楚上述算法的基本原理,先假设一个例子,下面所有的算法将基于这个例子讲解。
假设当前同一个topic下有queue队列 10
个,消费者共有4
个,如下图所示:
这里所谓的平均分配算法,并不是指的严格意义上的完全平均,如上面的例子中,10个queue,而消费者只有4个,无法是整除关系,除了整除之外的多出来的queue,将依次根据消费者的顺序均摊。
按照上述例子来看,10/4=2
,即表示每个消费者
平均均摊2个queue;而10%4=2
,即除了均摊之外,多出来2个queue
还没有分配,那么,根据消费者的顺序consumer-1
、consumer-2
、consumer-3
、consumer-4
,则多出来的2个queue
将分别给consumer-1
和consumer-2
。
最终,分摊关系如下:
consumer-1
:3个consumer-2
:3个consumer-3
:2个consumer-4
:2个环形平均算法,是指根据消费者的顺序,依次在由queue队列
组成的环形图中逐个分配
其基本模式如下:
这种算法最终分配的结果是:
consumer-1
: #0,#4,#8consumer-2
: #1, #5, # 9consumer-3
: #2,#6consumer-4
: #3,#7
默认消费者使用使用了
AllocateMessageQueueAveragely
平均分配策略
如果需要使用其他分配策略,使用方式如下
//创建一个消息消费者,并设置一个消息消费者组,并指定使用一致性hash算法的分配策略
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer(null,"rocket_test_consumer_group",null,new AllocateMessageQueueConsistentHash());
.....
生产端保障需要从一下几个方面来保障
发送者向MQ执行发送消息API时,同步等待,直到消息服务器返回发送结果,会在收到接收方发回响应之后才发下一个数据包的通讯方式,这种方式只有在消息完全发送完成之后才返回结果,此方式存在需要同步等待发送结果的时间代价。
简单来说,同步发送就是指 producer 发送消息后,会在接收到 broker 响应后才继续发下一条消息的通信方式。
使用场景
由于这种同步发送的方式确保了消息的可靠性,同时也能及时得到消息发送的结果,故而适合一些发送比较重要的消息场景,比如说重要的通知邮件、营销短信等等,在实际应用中,这种同步发送的方式还是用得比较多的。
注意事项
这种方式具有内部重试机制,即在主动声明本次消息发送失败之前,内部实现将重试一定次数,默认为2次(DefaultMQProducer#getRetryTimesWhenSendFailed
),发送的结果存在同一个消息可能被多次发送给broker,这里需要应用的开发者自己在消费端处理幂等性问题。
异步发送是指发送方发出数据后,不等接收方发回响应,接着发送下个数据包的通讯方式。 MQ 的异步发送,需要用户实现异步发送回调接口(
SendCallback
)
异步发送是指 producer 发出一条消息后,不需要等待 broker 响应,就接着发送下一条消息的通信方式,需要注意的是,不等待 broker 响应,并不意味着 broker 不响应,而是通过回调接口来接收 broker 的响应,所以要记住一点,异步发送同样可以对消息的响应结果进行处理。
使用场景
由于异步发送不需要等待 broker 的响应,故在一些比较注重 RT(响应时间)的场景就会比较适用,比如,在一些视频上传的场景,如视频上传之后需要进行转码,如果使用同步发送的方式来通知启动转码服务,那么就需要等待转码完成才能发回转码结果的响应,由于转码时间往往较长,很容易造成响应超时,此时,如果使用的是异步发送通知转码服务,那么就可以等转码完成后,再通过回调接口来接收转码结果的响应了。
发送方式 | 发送 TPS | 发送结果反馈 | 可靠性 | 适用场景 |
---|---|---|---|---|
同步发送 | 一般 | 有 | 不丢失 | 重要的通知场景 |
异步发送 | 快 | 有 | 不丢失 | 比较注重 RT(响应时间)的场景 |
单向发送 | 最快 | 无 | 可能丢失 | 可靠性要求并不高的场景 |
在实际使用场景中,利用何种发送方式,可以总结如下:
- 当发送的消息不重要时,采用
one-way
方式,以提高吞吐量;- 当发送的消息很重要是,且对响应时间不敏感的时候采用
sync
方式;- 当发送的消息很重要,且对响应时间非常敏感的时候采用
async
方式;
发送消息时,将获得包含SendStatus的SendResult,首先,假设Message的isWaitStoreMsgOK = true(默认为true),如果没有抛出异常,将始终获得SEND_OK,以下是每个状态的说明列表:
如果设置了 FlushDiskType=SYNC_FLUSH
(默认是 ASYNC_FLUSH),并且 Broker 没有在 syncFlushTimeout
(默认是 5 秒)设置的时间内完成刷盘,就会收到此状态码。
如果设置为 SYNC_MASTER
,并且 slave Broker 没有在 syncFlushTimeout
设定时间内完成同步,就会收到此状态码。
如果设置为 SYNC_MASTER
,并没有配置 slave Broker,就会收到此状态码。
这个状态可以简单理解为,没有发生上面列出的三个问题状态就是SEND_OK,需要注意的是,SEND_OK
并不意味着可靠,如果想严格确保没有消息丢失,需要开启 SYNC_MASTER or SYNC_FLUSH。
如果收到了 FLUSH_DISK_TIMEOUT, FLUSH_SLAVE_TIMEOUT
,意味着消息会丢失,有2个选择,一是无所谓,适用于消息不关紧要的场景,二是重发,但可能产生消息重复,这就需要consumer进行去重控制,如果收到了 SLAVE_NOT_AVAILABLE
就要赶紧通知管理员了。
如果由于网络抖动等原因,Producer程序向Broker发送消息时没有成功,即发送端没有收到Broker的ACK,导致最终Consumer无法消费消息,此时RocketMQ会自动进行重试。
DefaultMQProducer可以设置消息发送失败的最大重试次数,并可以结合发送的超时时间来进行重试的处理,具体API如下:
//设置消息发送失败时的最大重试次数
public void setRetryTimesWhenSendFailed(int retryTimesWhenSendFailed) {
this.retryTimesWhenSendFailed = retryTimesWhenSendFailed;
}
//同步发送消息,并指定超时时间
public SendResult send(Message msg,
long timeout) throws MQClientException, RemotingException, MQBrokerException, InterruptedException {
return this.defaultMQProducerImpl.send(msg, timeout);
超时重试针对网上说的超时异常会重试的说法都是错误的
是因为下面测试代码的超时时间设置为5毫秒 ,按照正常肯定会报超时异常,但设置1次重试和3000次的重试,虽然最终都会报下面异常,但输出错误时间报显然不应该是一个级别,但测试发现无论设置的多少次的重试次数,报异常的时间都差不多。
测试代码
public class RetryProducer {
public static void main(String[] args) throws UnsupportedEncodingException, InterruptedException, RemotingException, MQClientException, MQBrokerException {
//创建一个消息生产者,并设置一个消息生产者组
DefaultMQProducer producer = new DefaultMQProducer("rocket_test_consumer_group");
//指定 NameServer 地址
producer.setNamesrvAddr("127.0.0.1:9876");
//设置重试次数(默认2次)
producer.setRetryTimesWhenSendFailed(300000);
//初始化 Producer,整个应用生命周期内只需要初始化一次
producer.start();
Message msg = new Message(
/* 消息主题名 */
"topicTest",
/* 消息标签 */
"TagA",
/* 消息内容 */
("Hello Java demo RocketMQ ").getBytes(RemotingHelper.DEFAULT_CHARSET));
//发送消息并返回结果,设置超时时间 5ms 所以每次都会发送失败
SendResult sendResult = producer.send(msg, 5);
System.out.printf("%s%n", sendResult);
// 一旦生产者实例不再被使用则将其关闭,包括清理资源,关闭网络连接等
producer.shutdown();
}
}
揭晓答案
针对这个疑惑,需要查看源码,发现同步发送的时候,超时是不重试的
/**
* 说明 抽取部分代码
*/
private SendResult sendDefaultImpl(Message msg, final CommunicationMode communicationMode, final SendCallback sendCallback, final long timeout) {
//1、获取当前时间
long beginTimestampFirst = System.currentTimeMillis();
long beginTimestampPrev ;
//2、去服务器看下有没有主题消息
TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());
if (topicPublishInfo != null && topicPublishInfo.ok()) {
boolean callTimeout = false;
//3、通过这里可以很明显看出 如果不是同步发送消息 那么消息重试只有1次
int timesTotal = communicationMode == CommunicationMode.SYNC ? 1 + this.defaultMQProducer.getRetryTimesWhenSendFailed() : 1;
//4、根据设置的重试次数,循环再去获取服务器主题消息
for (times = 0; times < timesTotal; times++) {
MessageQueue mqSelected = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName);
beginTimestampPrev = System.currentTimeMillis();
long costTime = beginTimestampPrev - beginTimestampFirst;
//5、前后时间对比 如果前后时间差 大于 设置的等待时间 那么直接跳出for循环了 这就说明连接超时是不进行多次连接重试的
if (timeout < costTime) {
callTimeout = true;
break;
}
//6、如果超时直接报错
if (callTimeout) {
throw new RemotingTooMuchRequestException("sendDefaultImpl call timeout");
}
}
}
异步重试
可以通过以下代码设置异步从重试次数,默认两次
producer.setRetryTimesWhenSendAsyncFailed(2);
异步重试是通过递归的方式来进行重试的
MQClientAPIImpl#sendMessageAsync
private void sendMessageAsync(... ) throws InterruptedException, RemotingException {
final long beginStartTime = System.currentTimeMillis();
.....
producer.updateFaultItem(brokerName, System.currentTimeMillis() - responseFuture.getBeginTimestamp(), false);
} catch (Exception e) {
producer.updateFaultItem(brokerName, System.currentTimeMillis() - responseFuture.getBeginTimestamp(), true);
//发送重试请求
onExceptionImpl(brokerName, msg, timeoutMillis - cost, request, sendCallback, topicPublishInfo, instance,
retryTimesWhenSendFailed, times, e, context, true, producer);
}
.....
MQClientAPIImpl#onExceptionImpl
private void onExceptionImpl(...){
//获取到当前重试次数
int tmp = curTimes.incrementAndGet();
//是否需要重试,并且重试次数小于timesTotal
if (needRetry && tmp <= timesTotal) {
...
try {
request.setOpaque(RemotingCommand.createNewRequestId());
sendMessageAsync(addr, retryBrokerName, msg, timeoutMillis, request, sendCallback, topicPublishInfo, instance,
timesTotal, curTimes, context, producer);
} catch (InterruptedException e1) {
onExceptionImpl(retryBrokerName, msg, timeoutMillis, request, sendCallback, topicPublishInfo, instance, timesTotal, curTimes, e1,
context, false, producer);
...
}
}
通过这段源码很明显可以看出以下几点
autoCreateTopicEnable
设置为true 标识开启自动创建topic
上述 broker 中流程会有一个问题,就是在producer更新路由信息之前的这段时间,如果消息只发送到了broker-a,则broker-b上不会创建这个topic的路由信息,broker互相之间不通信,当producer更新之后,获取到的broker列表只有broker-a,就永远不会轮询到broker-b的队列(因为没有路由信息),所以生产通常关闭自动创建broker,而是采用手动创建的方式。
注意,有可能在实际的生产过程中,RocketMQ 有几台服务器构成的集群
其中有可能是一个主题 TopicA 中的 4 个队列分散在 Broker1、Broker2、Broker3 服务器上。
如果这个时候 Broker2 挂了,但是生产者不知道(因为生产者客户端每隔 30S 更新一次路由,但是 NamServer 与 Broker 之间的心跳检测间隔是 10S,所以生产者最快也需要 30S 才能感知 Broker2 挂了),所以发送到 queue2 的消息会失败,RocketMQ 发现这次消息发送失败后,就会将 Broker2排除在消息的选择范围,下次再次发送消息时就不会发送到 Broker2,这样做的目的就是为了提高发送消息的成功率。
例如在发送之前 sendWhichQueue 该值为 broker-a 的 q1,如果由于此时 broker-a 的突发流量异常大导致消息发送失败,会触发重试,按照轮循机制,下一个选择的队列为 broker-a 的 q2 队列,此次消息发送大概率还是会失败,即尽管会重试 2 次,但都是发送给同一个 Broker 处理,此过程会显得不那么靠谱,即大概率还是会失败,那这样重试的意义将大打折扣。
故 RocketMQ 为了解决该问题,引入了故障规避机制,在消息重试的时候,会尽量规避上一次发送的 Broker,回到上述示例,当消息发往 broker-a q1 队列时返回发送失败,那重试的时候,会先排除 broker-a 中所有队列,即这次会选择 broker-b q1 队列,增大消息发送的成功率。
上述规避思路是默认生效的,即无需干预。
但 RocketMQ 提供了两种规避策略,该参数由 sendLatencyFaultEnable 控制,用户可干预,表示是否开启延迟规避机制,默认为不开启。(DefaultMQProducer中设置这两个参数)
如果所有的 Broker 都触发了故障规避,并且 Broker 只是那一瞬间压力大,那岂不是明明存在可用的 Broker,但经过你这样规避,反倒是没有 Broker 可用来,那岂不是更糟糕了?针对这个问题,会退化到队列轮循机制,即不考虑故障规避这个因素,按自然顺序进行选择进行兜底。
应用程序在使用RocketMQ进行消息消费时必须支持幂等消费,即同一个消息被消费多次和消费一次的结果一样,这一点在使用RoketMQ或者分析RocketMQ源代码之前再怎么强调也不为过。
**“至少一次送达”**的消息交付策略,和消息重复消费是一对共生的因果关系,要做到不丢消息就无法避免消息重复消费,原因很简单,试想一下这样的场景:客户端接收到消息并完成了消费,在消费确认过程中发生了通讯错误,从Broker的角度是无法得知客户端是在接收消息过程中出错还是在消费确认过程中出错,为了确保不丢消息,重发消息是唯一的选择。
有了消息幂等消费约定的基础,RocketMQ就能够有针对性地采取一些性能优化措施,例如:并行消费、消费进度同步机制等,这也是RocketMQ性能优异的原因之一。
从不同的维度划分,Consumer支持以下消费模式:
使用相同 Group ID 的订阅者属于同一个集群,同一个集群下的订阅者消费逻辑必须完全一致(包括 Tag 的使用),这些订阅者在逻辑上可以认为是一个消费节点
注意事项
广播消费指的是:一条消息被多个consumer消费,即使这些consumer属于同一个ConsumerGroup,消息也会被ConsumerGroup中的每个Consumer都消费一次,广播消费中ConsumerGroup概念可以认为在消息划分方面无意义。
注意事项
如果业务需要使用广播模式,也可以创建多个 Group ID,用于订阅同一个 Topic。
注意事项
RocketMQ消息消费本质上是基于的拉(pull)模式,consumer主动向消息服务器broker拉取消息。
上面使用的消费者都是PUSH模式,也是最常用的消费模式
由消息中间件(MQ消息服务器代理)主动地将消息推送给消费者;采用Push方式,可以尽可能实时地将消息发送给消费者进行消费。但是,在消费者的处理消息的能力较弱的时候(比如,消费者端的业务系统处理一条消息的流程比较复杂,其中的调用链路比较多导致消费时间比较久。概括起来地说就是**“慢消费问题”**),而MQ不断地向消费者Push消息,消费者端的缓冲区可能会溢出,导致异常。
实现方式,代码上使用 DefaultMQPushConsumer
consumer把轮询过程封装了,并注册MessageListener监听器,取到消息后,唤醒MessageListener的consumeMessage()来消费,对用户而言,感觉消息是被推送(push)过来的。主要用的也是这种方式。
RocketMQ的PUSH模式是由PULL模式来实现的
由消费者客户端主动向消息中间件(MQ消息服务器代理)拉取消息;采用Pull方式,如何设置Pull消息的频率需要重点去考虑,举个例子来说,可能1分钟内连续来了1000条消息,然后2小时内没有新消息产生(概括起来说就是**“消息延迟与忙等待”**)。如果每次Pull的时间间隔比较久,会增加消息的延迟,即消息到达消费者的时间加长,MQ中消息的堆积量变大;若每次Pull的时间间隔较短,但是在一段时间内MQ中并没有任何消息可以消费,那么会产生很多无效的Pull请求的RPC开销,影响MQ整体的网络性能。
注意:RocketMQ 4.6.0版本后将弃用DefaultMQPullConsumer
DefaultMQPullConsumer方式需要手动管理偏移量,官方已经被废弃,将在2022年进行删除
DefaultLitePullConsumer
该类是官方推荐使用的手动拉取的实现类,偏移量提交由RocketMQ管理,不需要手动管理
consumer的每个实例是靠队列分配来决定如何消费消息的,那么消费进度具体是如何管理的,又是如何保证消息成功消费的?(RocketMQ有保证消息肯定消费成功的特性,失败则重试)
为了保证数据不被丢失,RocketMQ支持消息确认机制,即ack。发送者为了保证消息肯定消费成功,只有使用方明确表示消费成功,RocketMQ才会认为消息消费成功。中途断电,抛出异常等都不会认为成功——即都会重新投递。
业务实现消费回调的时候,当且仅当此回调函数返回
ConsumeConcurrentlyStatus.CONSUME_SUCCESS
,RocketMQ才会认为这批消息(默认是1条)是消费完成的。
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {
System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs);
execute();//执行真正消费
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
})
如果这时候消息消费失败,例如数据库异常,余额不足扣款失败等一切业务认为消息需要重试的场景,只要返回
ConsumeConcurrentlyStatus.RECONSUME_LATER
,RocketMQ就会认为这批消息消费失败了。
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {
System.out.println(Thread.currentThread().getName() + " Receive New Messages: " + msgs);
execute();//执行真正消费
return ConsumeConcurrentlyStatus.RECONSUME_LATER
}
})
为了保证消息是肯定被至少消费成功一次,RocketMQ会把这批消息重发回Broker(topic不是原topic而是这个消费组的RETRY topic),在延迟的某个时间点(默认是10秒,业务可设置)后,再次投递到这个ConsumerGroup,而如果一直这样重复消费都持续失败到一定次数(默认16次),就会投递到DLQ死信队列,应用可以监控死信队列来做人工干预。
对于顺序消息,当消费者消费消息失败后,消息队列RocketMQ版会自动不断地进行消息重试(每次间隔时间为1秒),这时,应用会出现消息消费被阻塞的情况,因此,建议您使用顺序消息时,务必保证应用能够及时监控并处理消费失败的情况,避免阻塞现象的发生。
无序消息的重试只针对集群消费方式生效;广播方式不提供失败重试特性,即消费失败后,失败消息不再重试,继续消费新的消息。
消息队列RocketMQ版默认允许每条消息最多重试16次,每次重试的间隔时间如下。
第几次重试 | 与上次重试的间隔时间 | 第几次重试 | 与上次重试的间隔时间 |
---|---|---|---|
1 | 10秒 | 9 | 7分钟 |
2 | 30秒 | 10 | 8分钟 |
3 | 1分钟 | 11 | 9分钟 |
4 | 2分钟 | 12 | 10分钟 |
5 | 3分钟 | 13 | 20分钟 |
6 | 4分钟 | 14 | 30分钟 |
7 | 5分钟 | 15 | 1小时 |
8 | 6分钟 | 16 | 2小时 |
如果消息重试16次后仍然失败,消息将不再投递。如果严格按照上述重试时间间隔计算,某条消息在一直消费失败的前提下,将会在接下来的4小时46分钟之内进行16次重试,超过这个时间范围消息将不再重试投递。
消费者和生产者的重试还是有区别的,主要有两点
1S,5S,10S,30S,1M,2M····2H
进行重试。注意:Product在异步情况重试失效,而对于Consumer在广播情况下重试失效。
需要重试
消费失败后,重试配置方式,集群消费方式下,消息消费失败后期望消息重试,需要在消息监听器接口的实现中明确进行配置(三种方式任选一种):
无需重试
集群消费方式下,消息失败后期望消息不重试,需要捕获消费逻辑中可能抛出的异常,最终返回Action.CommitMessage,此后这条消息将不会再重试。
//注册消息监听器
consumer.registerMessageListener(new MessageListenerConcurrently() {
public ConsumeConcurrentlyStatus consumeMessage(List list, ConsumeConcurrentlyContext context) {
//消息处理逻辑抛出异常,消息将重试。
try {
doConsumeMessage(list);
}catch (Exception e){
//捕获消费逻辑中的所有异常,并返回Action.CommitMessage;
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
//业务方正常消费
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
在正常情况下无法被消费(超过最大重试次数)的消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列就称为死信队列(Dead-Letter Queue)
当一条消息初次消费失败,消息队列 RocketMQ 会自动进行消息重试;达到最大重试次 数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息,此时,消息队列 RocketMQ 不会立刻将消息丢弃,而是将其发送到该消费者对应的特殊队列中。 在消息队列 RocketMQ 中,这种正常情况下无法被消费的消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列称为死信队列(Dead-Letter Queue)。
指消息发送到某个队列后,在指定多长时间之后才能被消费
broker有配置项messageDelayLevel,默认值为“1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h”,18个level
发送消息时设置延迟
msg.setDelayLevel(level)