【从零搭建slam】3

【从零搭建slam】——感知与大脑(硬件学习)
参考:https://zhuanlan.zhihu.com/p/499447422
激光雷达ydlidar-x4激光雷达
低成本的2D激光雷达,获取周围障碍物和环境的轮廓形状。用激光雷达得到障碍物信息后就能建图,避障和自主导航了。
【从零搭建slam】3_第1张图片
激光雷达由激测距模组和电机构成,雷达主体需要连接转接板,用于供电和uart转usb
【从零搭建slam】3_第2张图片
工作原理:三角法、飞行时间法
雷达工作过程
【从零搭建slam】3_第3张图片
IMU
IMU是惯性测量单元的简称,用于测量物体的三轴姿态角(roll、pitch、yaw)、三轴加速度(acc_x、acc_y、acc_z)、三轴角速度(w_x、w_y、w_z)等。IMU惯性测量单元在制造过程中,由于物理因素,导致IMU惯性测量单元实际的坐标轴与理想的坐标轴之间会有一定的偏差,同时三轴加速度、三轴角速度、三轴磁力计的原始值会与真实值有一个固定的偏差等。这里提到的自校准就是要通过给的补偿值来减小或消除坐标轴的偏差及原始值的固定偏差,也就是所谓的IMU内部标定。如果将IMU安装到机器人或摄像头上后,需要知道IMU与机器人或摄像头的相对位置,这个时候进行的标定就是所谓的IMU外部标定。
误差模型:

【从零搭建slam】3_第4张图片
校准方法:
【从零搭建slam】3_第5张图片
通常的校准过程是,将IMU接入PC端,手动将IMU置不同的状态,PC端通过采集这些数据,完成校准。另一种校准过程是,将校准算法内置在IMU模块上的MCU中,在IMU工作的过程中实时采集数据,并自动完成校准,不需要人为的干预【从零搭建slam】3_第6张图片
轮式里程计与运动控制
【从零搭建slam】3_第7张图片
底盘主要由控制板和带编码器的减速电机构成。电机控制板通过串口与工控机相连接,接收控制指令,利用PID算法对电机进行控制;同时,采集电机上的编码器数据发送给大脑,利用航迹推演算法得到底盘的里程计信息。
【从零搭建slam】3_第8张图片
机器人大脑发送控制命令,其实就是期望左、右电机达到的目标转速,我们都知道在一个控制系统中,被控对象很难完全按照期望目标来运行,这就需要引入反馈对被控对象进行实时的闭环控制,让被控对象尽量逼近期望目标,电机控制板主要就是用来实现这个过程。同时,电机控制板还负责对电机编码信号进行采样,将单位采样时间(一般为10ms)内的编码脉冲累计值作为里程数据发送给机器人大脑,机器人大脑利用航迹推演算法求解出里程计信息。

【从零搭建slam】3_第9张图片

电机控制板与机器人大脑之间采用串口通信。电机左、右轮期望转速被封装到串口的字符串中,作为控制命令发送给电机控制板;单位时间(一般10ms)内采样到的电机编码脉冲累计值(等效为实际电机速度)作为里程数据,以同样的方式被封装到串口的字符串中发送给机器人大脑。可以看出,控制命令与里程数据遵循一样的封装协议。

【从零搭建slam】3_第10张图片

电机控制最常用的就是PID控制算法,如图23为PID算法流程。以电机转速控制为例,r(t)就是给定的目标转速,c(t)就是电机实际运行时的转速,通过闭环反馈可以求得r(t)与c(t)的偏差值e(t),PID控制算法中的比例(P)、积分(I)、微分(D)调节器利用e(t)生成新的控制量u(t),u(t)通过执行机构(电机驱动器)作用于被控对象(电机),电机的实际运行速度c(t)通过闭环反馈,进入下一次PID调节。就这样,不断的通过闭环反馈调节,使电机实际运行速度c(t)最终逼近给定的目标速度r(t)。

轮式里程计
【从零搭建slam】3_第11张图片

如图26,为通过航迹推演计算里程计的过程。随时间推移机器人底盘的实时位姿p1、p2、p3、…、pn连接起来就形成了机器人的航迹,考虑很短的时间内两相邻机器人位姿p1和p2,在已知机器人位姿p1和机器人当前左右轮速度vl、vr的条件下,利用微积分的思想可以推算出机器人在下一个时刻的位姿p2,通过这样不断的推演,就可以计算出机器人当前的位姿以及速度、角速度等信息,这就是所谓的航迹推演。

你可能感兴趣的:(人工智能,算法)