Flink-CDC 同步Mysql数据到S3 Hudi

软件版本

Mysql: 5.7
Hadoop: 3.1.3
Flink: 1.12.2
Hudi: 0.9.0
Hive: 2.3.7

1.Mysql建表并开启bin_log

create table users(
    id bigint auto_increment primary key,
    name varchar(20) null,
    birthday timestamp default CURRENT_TIMESTAMP not null,
    ts timestamp default CURRENT_TIMESTAMP not null
);

2.安装Hadoop

(1)解压hadoop安装包:tar -zxvf hadoop-3.1.3.tar.gz
(2)配置环境变量

export HADOOP_HOME=/Users/xxx/hadoop/hadoop-3.1.3
export HADOOP_COMMON_HOME=$HADOOP_HOME
export PATH=$HADOOP_HOME/bin:$PATH

#添加hadoop classpath
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

3.下载安装Flink

(1)在Flink官网下载flink软件包:https://flink.apache.org/downloads.html
(2)解压:tar -zxvf flink-1.12.2-bin-scala_2.11.tgz
(3)配置flink(vim conf/flink-conf.yaml),开启checkpoint(flink-cdc需要开启checkpoint才能生成hudi commit,提交数据)

state.backend: filesystem
execution.checkpointing.interval: 10000
state.checkpoints.dir: file:///Users/xxx/flink/flink-1.12.2/hudi/flink-checkpoints
state.savepoints.dir: file:///Users/xxx/flink/flink-1.12.2/hudi/flink-savepoints

(4)配置flink(vim conf/flink-conf.yaml),增加slot数

taskmanager.numberOfTaskSlots: 4
vim workers
  1 localhost
  2 localhost
  3 localhost
  4 localhost

(4)启动Flink:bin/start-cluster.sh

4.编译Hudi,拷贝jar包

(1)下载Hudi源码:git clone https://github.com/apache/hudi.git
(2)切换到0.9.0分支:git checkout origin release-0.9.0
(3)编译:mvn clean package -DskipTests
(4)编译完成后,会在packaging/hudi-flink-bundle/target目录下生成对应的jar包(hudi-flink-bundle_2.11-0.9.0.jar),将此jar包拷贝至flink的lib目录中:

cp hudi-flink-bundle_2.11-0.9.0.jar ~/flink/lib

5.将其他相关jar包拷贝至flink/lib目录下

(1)flink-sql-connector-mysql-cdc-1.2.0.jar:用于连接mysql
(2)aws-java-sdk-bundle-1.11.874.jar/hadoop-aws-3.1.3.jar:用于连接aws s3

6.启动sql-client

1.bin/sql-client.sh embedded
2.建立mysql 映射表
create table mysql_users(
    id bigint primary key not enforced,
    name string,
    birthday timestamp(3),
    ts timestamp(3)
) with (
    'connector' = 'mysql-cdc',
    'hostname' = '127.0.0.1',
    'port' = '3306',
    'username' = 'root',
    'password' = '123456',
    'database-name' = 'test_cdc',
    'table-name' = 'users'
);

3.建立hudi映射表
create table hudi_users(
    id bigint primary key not enforced,
    name string,
    birthday timestamp(3),
    ts timestamp(3),
    `partition` varchar(20)
) partitioned by (`partition`) with (
    'connector' = 'hudi',
    'table.type' = 'COPY_ON_WRITE',
    'path' = 's3a://xxx/yyy/hudi_users',
    'read.streaming.enabled' = 'true',
    'read.streaming.check-interval' = '1'
);

4.创建任务
insert into hudi_users select *, date_format(birthday, 'yyyyMMdd') from mysql_users;

检查s3上是否生成了数据;

7.Hive建立external table

1.通过beeline连接hive
!connect jdbc:hive2://[ELB-DEV-Presto-hs2-s0000e2c5-06a22927ec8bb2f6.elb.us-east-1.amazonaws.com:10000/default;auth=noSasl](http://elb-dev-presto-hs2-s0000e2c5-06a22927ec8bb2f6.elb.us-east-1.amazonaws.com:10000/default;auth=noSasl)


CREATE EXTERNAL TABLE `hudi_user_mor`(               
   `_hoodie_commit_time` string,                    
   `_hoodie_commit_seqno` string,                   
   `_hoodie_record_key` string,                     
   `_hoodie_partition_path` string,                 
   `_hoodie_file_name` string,                      
   `id` bigint,                                     
   `name` string,                                   
   `birthday` bigint,                               
   `ts` bigint)                                     
 PARTITIONED BY (                                   
   `partition` string)                              
 ROW FORMAT SERDE                                   
   'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'  
 STORED AS INPUTFORMAT                              
   'org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat' 
 OUTPUTFORMAT                                       
   'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat' 
 LOCATION                                           
   's3a://xxx/yyy/hudi_users';

添加分区:
alter table hudi_user_mor add if not exists partition(`partition`='par1') location 's3a://fw-itf/DFMOD-c34db792/target_table/par1';

8.通过presto查询数据

1.进入presto
./presto-cli-0.248-executable.jar --server ELB-DEV-Presto-master-s0000eca1-efaff1be86b6ffa3.elb.us-east-1.amazonaws.com:9106 --catalog db

2.查询数据
select * from hudi_user_mor where partition = 'par1' limit 5;

8.测试同步

在mysql中执行增、删、改语句,并在Hive或presto中进行查询,可以实时的查询到改动。

你可能感兴趣的:(Flink-CDC 同步Mysql数据到S3 Hudi)