- AI前端开发的技能需求变化:拥抱AI时代的新挑战
wangtaohappy
人工智能前端
随着人工智能技术的飞速发展,前端开发领域也迎来了翻天覆地的变化。越来越多的AI工具涌现,为开发者带来了前所未有的机遇与挑战。在AI赋能下,前端开发不再仅仅是静态页面的构建,而是与AI深度融合,创造更智能、更交互的应用。而这,也意味着前端开发者的技能需求正经历着前所未有的转变。本文将深入探讨AI时代前端开发的技能需求变化,并探讨如何适应这一变化,提升自身竞争力。我们将会重点讨论AI写代码工具在其中扮
- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 什么是AGI
hunter206206
人工智能agi
AGI(ArtificialGeneralIntelligence,人工通用智能)是指具备与人类相当或超越人类水平的通用智能的人工智能系统。与当前主流的**狭义人工智能(NarrowAI)**不同,AGI能够像人类一样灵活地处理各种任务,具备学习、推理、规划、创造和解决复杂问题的能力。AGI的核心特点通用性:AGI能够处理多种任务,而不仅限于特定领域。例如,它既能下棋,也能写作、驾驶、解决数学问题
- 14.5 Auto-GPT:基于Agent的AGI实验如何重新定义人工智能未来?
少林码僧
AI大模型应用实战专栏gptagi人工智能transformer深度学习langchain
Auto-GPT:基于Agent的AGI实验如何重新定义人工智能未来?关键词:自主智能体范式、AGI演进路径、动态环境交互、认知架构革命、社会级智能网络一、AGI演进的关键瓶颈与Agent范式的突破1.1传统AI系统的能力天花板
- 什么AGI
MonkeyKing.sun
agi
通用人工智能(ArtificialGeneralIntelligence,AGI)是人工智能领域的一个概念,指能够在广泛的认知任务中展现出与人类相当,甚至超越人类能力的智能系统。与当前大量应用的、针对特定任务设计的狭义人工智能(如专注于图像识别的人脸识别系统、专注于语言翻译的翻译软件等)不同,AGI具备以下显著特征:自适应学习能力:能从各种经验中学习新知识,并迅速适应全新的环境与任务。例如,面对一
- vue页面导出Word文档(含图片)
·零落·
Vue日常研发问题总结vue页面导出word文档wordvue
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能教程文章目录一、vue介绍二、引用插件安装引入插件三、Word模板data数据页面函数echart图片获取四、热门博客一、vue介绍Vue.js是一个渐进式JavaScript框架,用于构建用户界面。与其他庞大的框架不同,Vue被设计为可以自底向上逐层应用。Vue的核心库只关注视图层,不仅易于
- 覆盖从供应、生产、销售到运营的全过程,引领行业数智化转型新方向的智慧快消开源了
AI服务老曹
开源人工智能自动化音视频能源
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。基于多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。基
- 杰和推出面向人工智能应用的AI服务器
weixin_34211761
在这个数据爆炸的年代,我们获取数据的难度大大降低,但要获取数据的价值仅依靠简单的数据分析是不可行的。如果将大数据看作一个产业,那么数据深挖(挖掘)就是其中一项核心技术,数据深挖(挖掘)通常与计算机科学有关,如数据统计、数据检索、分析处理、机器学习等技术,而这些恰好是人工智能技术的优势。人工智能一直都是备受关注的热门领域,更是被认为是第四次工业革命。随着技术的不断开发及深入优化,人工智能以迅雷不及掩
- 金融大模型应用的机遇与挑战
Python程序员罗宾
金融人工智能语言模型数据库自然语言处理
大模型本质特征大模型通常指大语言模型(LargeLanguageModel,LLM),是基于深度学习算法的自然语言处理技术,是通用大模型。大模型也在从单一自然语言处理模态向语音、图像等多模态大模型演进。目前国内外推出了众多的大模型,国内就不下上百款,也因此被称为“百模大战”或“千模大战”。但很多所谓的“大模型”仅是叫“大模型”而已,不管参数量多少,都不能称为真正的大模型。参数量是大模型的一个特征,
- 【2025年最新】ChatGPT润色论文高阶技巧(附9个高级指令)
qq_36603278
chatgptgpt论文笔记人工智能
论文润色是学术写作中至关重要的一环,能够有效提升研究成果的表达质量和学术影响力。借助ChatGPT等人工智能工具,研究人员可以快速优化语言表达、完善内容结构,从而专注于核心研究内容。本文总结了9个适用于不同场景的高级指令,帮助学术写作者高效完成论文润色工作。在使用ChatGPT进行学术论文润色时,需要使用明确清晰的提示词指令来指导ChatGPT如何进行修改。这些指令包括你希望改进的具体方面,例如语
- 智能边缘计算:开启智能新时代
livefan
人工智能
什么是智能边缘计算?在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算可以减少数据传输的延迟,提高响应速度,增强数据处理的实时性和效率。而智能边缘计算,是边缘计算架构在涉及数据分析、机器学习或人工智能的工作负载中的应用。一般来说,边缘架构是一种将数据或应用程序放置在网络边缘的
- 多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221
level2Tick
A股level2历史数据金融数据库
多档买卖盘逐笔委托逐笔成交进行大数据分析以及模型结果20250221采用Level2逐笔成交与逐笔委托的详细记录,这种毫秒级别的数据能揭露众多关键信息,如庄家意图、虚假交易,使所有交易行为透明化。这对交易大师分析主力习性大有裨益,对人工智能进行机器学习也非常合适,数据量大且精确。以下是今日根据Level2逐笔成交与委托数据观察到的部分股票现象:level2逐笔成交逐笔委托数据下载链接:https:
- a股股票高频行情数据逐笔分析历史数据下载20250221
hightick
数据分析数据挖掘数据库金融
a股股票高频行情数据逐笔分析历史数据下载20250221基于Level2的逐笔成交和逐笔委托数据,这种毫秒级别的记录能分析出许多关键信息,如庄家意图、虚假动作,使所有交易行为暴露在阳光下。这对交易大师分析主力习性非常有帮助,对人工智能的学习也极具意义,数据量大且精准。以下是今日Level2逐笔成交与委托数据分析的部分股票现象:level2逐笔成交逐笔委托数据下载链接:https://pan.bai
- 自动化革命:Mbox边缘计算网关如何颠覆传统仓储行业
明达技术
自动化边缘计算人工智能
在自动化数字化的时代,仓储行业正经历着一场前所未有的变革。随着人工智能、物联网、机器人技术等先进技术的不断发展,传统的仓储模式正在被重新定义。首先,自动化设备如自动搬运车、自动分拣机、无人叉车等在仓库中的应用越来越广泛。这些设备不仅提高了仓储作业的效率,减少了人工成本,还大大降低了作业中的错误率。例如,自动搬运车可以根据预设的路径自动运送货物,无需人工驾驶,节省了人力并提高了运输效率。我们自主研发
- DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?
晨陌y
chatgpt人工智能
一、引言在当今科技飞速发展的时代,人工智能(AI)已然成为推动各领域变革的核心力量。而在人工智能的众多分支中,自然语言处理(NLP)因其与人类日常交流和信息处理的紧密联系,成为了最受瞩目的领域之一。在这片充满创新与突破的领域里,DeepSeek和ChatGPT犹如两颗璀璨的明星,吸引着全球开发者、研究人员以及广大普通用户的目光。它们代表着当前AI语言模型的顶尖水准,一场关于“谁主沉浮”的激烈较量正
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 基于深度学习的股票短期趋势预测模型设计与实现【附代码】
算法与数据
深度学习人工智能
,我们首先对股票的基本交易数据进行了清洗和预处理,包括去除异常值、填补缺失值等。同时,我们还挖掘了多个可能影响股票价格走势的因子,如成交量、市盈率、市净率等,并将这些因子作为特征加入到数据集中。通过特征工程,我们进一步扩展了数据集,提高了模型的输入质量。在模型构建方面,我们采用了LSTM网络来处理时间序列数据。LSTM网络具有记忆功能,能够捕捉数据中的长期依赖关系,这对于股票价格走势的预测至关重要
- GPU与FPGA加速:硬件赋能AI应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
GPU与FPGA加速:硬件赋能AI应用1.背景介绍1.1人工智能的兴起人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。1.2硬件加速的必要性为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形
- DeepSeek 与网络安全:AI 在网络安全领域的应用与挑战
一ge科研小菜菜
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在当今数字化时代,网络安全已成为国家、企业和个人面临的重要挑战。从传统的病毒、木马攻击,到高级持续性威胁(APT)、零日漏洞和供应链攻击,网络威胁的形式日益复杂。与此同时,人工智能(AI)技术的快速发展正在为网络安全提供全新的解决方案,而DeepSeek作为AI领域的新兴力量,也正在探索如何利用深度学习和大规模语言模型(LLM)加强网络安
- 《解锁AI密码,机器人精准感知环境不再是梦!》
人工智能机器学习
在科技飞速发展的当下,人工智能与机器人技术的融合正深刻改变着世界。其中,人工智能助力机器人实现更精准的环境感知,已成为该领域的核心课题,吸引着全球科研人员与科技企业的目光。这不仅关乎机器人能否在复杂环境中高效执行任务,更预示着未来智能时代的发展走向。多传感器融合:感知基石的稳固搭建机器人要精准感知环境,首先离不开各类传感器。视觉传感器,比如常见的摄像头,能像人类眼睛一样捕捉周围的图像信息,通过对图
- DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
一ge科研小菜菜
人工智能后端人工智能云原生
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,后端开发正经历一场深刻变革。从传统的RESTAPI到现代的云原生架构,后端系统的设计越来越依赖智能化技术,提高系统的效率、可扩展性和稳定性。DeepSeek作为AI领域的新兴力量,在后端开发中展现出巨大的潜力。本文将深入探讨DeepSeek在后端开发中的应用,包括智能API生成、数据库优化、自动化运维、
- AI赋能Spring Boot:打造智能应用的秘诀
墨瑾轩
一起学学Java【一】人工智能springboot后端
关注墨瑾轩,带你探索Java的奥秘超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣引言各位技术探险家们,欢迎来到今天的冒险——我们将一起探索如何将SpringBoot与AI服务集成,利用OpenAI和TensorFlow提升应用的智能。想象一下,你的应用程序不再是一个简单的代码集合,而是一个拥有智慧的伙伴,能够理解和预测用户的需求。这就是
- Deepseek从入门到精通,最全指令汇总
weixin_50019283
ai人工智能深度学习服务器运维
在人工智能技术日新月异的今天,Deepseek作为一款功能强大的语言交互工具,正深刻地改变着我们获取信息、进行内容创作的方式。无论是从事文案策划、程序开发,还是单纯想要解决日常疑问,Deepseek凭借其卓越的语言理解与生成能力,都能成为我们得力的助手。而若想充分挖掘Deepseek的潜力,熟练掌握各类指令便是开启这扇智能大门的钥匙。接下来,就让我们一同深入探索这份从基础到高阶的Deepseek指
- 手撸 chatgpt 大模型:单词向量化编码和绝对位置编码算法
coding 迪斯尼
chatgpt算法人工智能大语言模型
在上一节中,我们将每个单词转换为一个表示数字的标记(token)。现在,我们需要将这个数字映射到一个向量上,这个向量称为嵌入(embedding)。在深度学习中,所有无法通过传统数据结构描述的对象都会被用一个向量表示,例如图像、语音、单词、音频等。最初,向量中的各个字段会被初始化为随机数,然后通过大量的数据和深度学习模型来训练这些向量。训练过程逐步改变向量字段的值,从而使这些字段包含某种“知识”。
- 大模型应用开发:核心技术与领域实践
每天五分钟玩转人工智能
人工智能
一本书籍的价值在人工智能领域,大模型技术以其强大的语言理解和生成能力,正在深刻改变着众多行业的应用方式。然而,面对这些复杂且前沿的技术实现与实际落地挑战,许多开发者和从业者往往感到无从下手。为了解答这些疑问,提供系统的技术知识和实战经验,《大模型应用开发:核心技术与领域实践》应运而生。这本书由科大讯飞AI团队与中国科大的资深专家联合撰写,旨在打通大模型的技术原理与应用实践之间的壁垒,为相关领域的从
- 三维扫描自动化智能检测系统:为品质护航,为效率加速
CASAIM
人工智能3d计算机视觉
产品质量是企业的生命线。然而,传统的检测方式往往依赖人工操作,不仅效率低下,还容易因人为因素导致检测结果不准确。自动化智能检测系统是一种集成了先进传感器技术、图像处理算法和人工智能的高科技设备。它能够自动识别和检测物体的尺寸、形状质量指标,并实时生成检测报告。通过智能化的检测流程,企业可以实现生产过程的全自动化质量控制,确保每一项产品都符合高标准的质量要求。CASAIM作为快速批量处理的自动化智能
- 微软量子芯片引领人工智能革命,开启计算新纪元
AI_1988
人工智能
摘要:微软近日发布了具有里程碑意义的量子芯片,这一突破性技术不仅为量子计算带来了新的可能性,更为人工智能领域带来了前所未有的发展机遇。本文将探讨微软量子芯片如何与人工智能相结合,以及它对未来计算世界的深远影响。一、引言在人工智能技术飞速发展的今天,计算能力成为了推动其进步的关键因素。微软的最新成果——量子芯片,以其独特的量子计算能力,为人工智能的发展提供了新的动力。这一技术的出现,预示着人工智能将
- AIGC从入门到实战:ChatGPT 需要懂得写提示词的人
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIGC从入门到实战:ChatGPT需要懂得写提示词的人第1章:AIGC概述1.1AIGC的基本概念AIGC(AI-GeneratedContent),即人工智能生成内容,是指利用人工智能技术,如生成对抗网络(GAN)、变分自编码器(VAE)等,生成具有高质量、多样化、个性化的文本、图像、音频等多媒体内容。AIGC技术已经广泛应用于内容创作、智能推荐、游戏开发、虚拟现实等多个领域,极大地提升了内容
- 2025全球开发者先锋大会在上海徐汇开幕
量子位
2月22日,全球开发者先锋大会在上海徐汇开幕。上海市长龚正,工业和信息化部副部长熊继军,上海市副市长陈杰,阿帕奇基金会全球副总裁、董事贾斯汀·麦克莱恩,上海市政府秘书长马春雷,上海市政府副秘书长庄木弟,上海市经济和信息化工作党委书记程鹏,上海市经济和信息化委员会主任张英,徐汇区委书记曹立强,徐汇区委副书记、区长王华等出席开幕式。熊继军指出,开发者是人工智能技术进步和产业发展的重要推动力量,在广大开
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p