Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
思路:从根结点开始遍历,如果与p或q匹配,则返回,递归遍历root结点的左右子树,如果一个结点出现在左子树,一个出现在右子树,那root就是其公共结点;如果两个结点都出现在左子树,那其最近公共祖先肯定在左子树;反之,其最近公共祖先都出现在右子树。
代码如下:
另一种思路是遍历树,记录每个节点对应的父结点,可以用 dict 存下, 然后记录结点 p 到 root 结点路径的所有结点,存在 dict(a) 中,再遍历节点 q,遍历其父结点,一直到 root 结点,如果结点在 dict(a)中,该节点就是两者最近的公共祖先。
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if root==None or root==p or root==q:
return root
left=self.lowestCommonAncestor(root.left,p,q)
right=self.lowestCommonAncestor(root.right,p,q)
if left!=None:
if right==None:
return left
else:
return root
else: ### 注意这儿不用写如果 right==None, return root
return right