图像噪声和滤波

图像噪声

        在图像采集、处理和传输过程中会受到噪声的影响。常见的图像噪声有椒盐噪声、高斯噪声等。

椒盐噪声

        椒盐噪声也叫脉冲噪声,在图像中比较常见,表现为随机出现的噪点,比如在明亮区域中出现的黑色像素。参考下图的例子:

图像噪声和滤波_第1张图片

高斯噪声

        高斯噪声是指噪声密度函数服从高斯分布的一类噪声。高斯噪声也叫正态噪声,这种噪声模型经常被用于实践中。高斯随机变量z的概率密度函数如下:

         这里的z表示灰度值,\mu表示z的平均值或期望值,\sigma表示z的标准差。标准差的平方\sigma ^2为z的方差。此函数的图像如下:

图像噪声和滤波_第2张图片

         下图是高斯噪声的示例图:

图像噪声和滤波_第3张图片

 图像平滑处理

        图像平滑处理,从信号处理角度看就是去除其中高频信息,保留低频信息。对图像进行低通滤波可以去除图像中的噪声,对图像进行平滑处理。常见的滤波方式有:均值滤波、高斯滤波、中值滤波和双边滤波。

 均值滤波

        均值滤波的原理非常简单,可以理解为求平均,它使用均值滤波模板对图像噪声进行滤波。

图像噪声和滤波_第4张图片

          S_{xy}表示中心点在(x,y),大小为m * n的矩形窗口的坐标组。

        对于一个3*3的区域,均值滤波卷积框表示如下:

        图像噪声和滤波_第5张图片

         均值滤波的优点是简单,运算速度快。缺点是由于只是简单的算平均,会造成图像的细节丢失。下图为使用均值滤波降噪后的对比图:

图像噪声和滤波_第6张图片

 高斯滤波

二维高斯分布函数

        由于图像有两个维度(x和y),因此二维高斯分布函数是构建高斯滤波的基础。

图像噪声和滤波_第7张图片

        二维高斯分布函数的图像如下:

图像噪声和滤波_第8张图片

        关于高斯分布图像的更多细节,可参考这里:

多维高斯分布---【2】_二维高斯分布_王延凯的博客的博客-CSDN博客多维高斯分布1.一维高斯分布2.二维高斯分布3.多维高斯分布4.心声1.一维高斯分布\qquad在介绍二维高斯分布之前我们先介绍一下一维高斯分布的函数图像,如下所示:f(x)=12π⋅δ⋅e−(x−μ)22δ2f(x)= \frac{1}{\sqrt{2 \pi}\cdot \delta}\cdot e^{-\frac{{(x-\mu)}^2}{2\delta^2}}f(x)=2π​⋅δ...https://blog.csdn.net/weixin_38468077/article/details/103508072        这里的\sigma可以看做两个值,x方向的标准差\sigma_x以及y方向的标准差\sigma_y

        \sigma_x\sigma_y取值越大,整个形状就越扁平;反之则形状越尖。高斯分布是一种钟形曲线,越靠近中心位置,值就越大;离中心越远值越小。在使用高斯滤波时,将“中心点”作为原点,其他点按照其在高斯分布曲线上的位置分配权重,最终通过卷积得到一个加权平均值。

高斯滤波过程

        1. 确定权重矩阵

            假设图像中心点坐标为(0,0),则和中心点相邻的8个点坐标(3x3窗口为例)为:

图像噪声和滤波_第9张图片

         要计算权重矩阵,首先要设定\sigma,我们假设它是1.5。然后代入x和y的坐标值计算出权重模板:

图像噪声和滤波_第10张图片

         这9个点的权重和等于0.4787147,并不等于1,为了让所有权重的和等于1,我们对这9个值分别除以0.4787147,这样就得到了最终的权重矩阵(按照各个像素权重百分比表示)。

图像噪声和滤波_第11张图片

        得到权重矩阵后,就可以对图像进行卷积做高斯滤波了。

        假设有一个3x3的像素矩阵,9个像素点的值如下:

图像噪声和滤波_第12张图片

         对每个点都乘以权重矩阵中对应位置的值,得到的结果如下:

图像噪声和滤波_第13张图片

         最后,中心点像素的值就是9个点像素值的和:

图像噪声和滤波_第14张图片

         对于RGB图像,只要对三个通道分别进行高斯模糊就可以得到对应的像素值。

        高斯滤波的效果的例子如下:

图像噪声和滤波_第15张图片

中值滤波

        中值滤波原理非常简单,中值就是中间值,这种滤波方法对于滤除椒盐噪声效果非常好。具体做法是对窗口内的像素值进行排序,找到中间值后,用中间值作为像素点的值。

图像噪声和滤波_第16张图片

         上图左侧的3x3窗口中,按照像素值大小排序可得:10,20,30,35,40,50,60,70,80。可以得到中间值为40,因此像素中心点的值在中值滤波后会变成40。

图像噪声和滤波_第17张图片

你可能感兴趣的:(计算机视觉,图像滤波,高斯滤波,均值滤波,中值滤波,图像处理)