import torch
from torch import nn
import torch.nn.functional as F
import os
model = nn.Sequential(nn.Linear(in_features=10,out_features=20),
nn.ReLU(),
nn.Linear(in_features=20,out_features=2),
nn.Sigmoid())
data = torch.rand([100,10])
optimizer = torch.optim.Adam(model.parameters(),lr = 0.001)
print(torch.cuda.is_available())
# 指定只用一张显卡
# 可在终端运行 CUDA_VISIBLE_DEVICES="0"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
# 选定显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 模型拷贝
model.to(device)
# 数据拷贝
data = data.to(device)
# 模型存储
torch.save({"model_state_dict":model.state_dict(),
"optimizer_state_dict":optimizer.state_dict()},"./model")
# 模型加载
checkpoint = torch.load("./model",map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
import torch
import torch.nn.functional as F
from torch import nn
import os
# 获取当前gpu的编号
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda",local_rank)
dataset = torch.rand([1000,10])
model = nn.Sequential(
nn.Linear(),
nn.ReLU(),
nn.Linear(),
nn.Sigmoid()
)
optimizer = torch.optim.Adam(model.parameters,lr=0.001)
# 检测GPU的数目
n_gpus = torch.cuda.device_count()
# 初始化一个进程组
torch.distributed.init_process_group(backend="nccl",init_method="env://") # backend为通讯方式
# 模型拷贝,放入DistributedDataParallel
model = torch.nn.parallel.DistributedDataParallel(model,device_ids=[local_rank],output_device=local_rank)
# 构建分布式的sampler
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# 构建dataloader
BATCH_SIZE = 128
dataloader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=BATCH_SIZE,
num_workers = 8,
sampler = sampler)
for epoch in range(1000):
for x in dataloader:
sampler.set_epoch(epoch) # 起到不同的shuffle作用
if local_rank == 0:
# 模型存储
torch.save({
"model_state_dict":model.module.state_dict()
},"./model")
# 模型加载
checkpoint = torch.load("./model",map_location=local_rank)
model.load_state_dict(checkpoint["model_state_dict"],
)
torchrun --nproc_per_node=n_gpus train.py
import torch
import torch.nn.functional as F
from torch import nn
import os
# 获取当前gpu的编号
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda",local_rank)
dataset = torch.rand([1000,10])
model = nn.Sequential(
nn.Linear(),
nn.ReLU(),
nn.Linear(),
nn.Sigmoid()
)
optimizer = torch.optim.Adam(model.parameters,lr=0.001)
# 检测GPU的数目
n_gpus = torch.cuda.device_count()
# 初始化一个进程组
torch.distributed.init_process_group(backend="nccl",init_method="env://") # backend为通讯方式
# 模型拷贝,放入DistributedDataParallel
model = torch.nn.parallel.DistributedDataParallel(model,device_ids=[local_rank],output_device=local_rank)
# 构建分布式的sampler
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# 构建dataloader
BATCH_SIZE = 128
dataloader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=BATCH_SIZE,
num_workers = 8,
sampler = sampler)
for epoch in range(1000):
for x in dataloader:
sampler.set_epoch(epoch) # 起到不同的shuffle作用
if local_rank == 0:
# 模型存储
torch.save({
"model_state_dict":model.module.state_dict()
},"./model")
# 模型加载
checkpoint = torch.load("./model",map_location=local_rank)
model.load_state_dict(checkpoint["model_state_dict"],
)
在每个节点上都执行一次
torchrun --nproc_per_node=n_gpus --nodes=2 --node_rank=0 --master_addr="主节点IP" --master_port="主节点端口号" train.py
略
by CyrusMay 2022 07 29