可以看看这两篇:
https://blog.csdn.net/baidu_38172402/article/details/81949447
https://blog.csdn.net/weixin_43206570/article/details/84797361
在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。
进行摄像机标定的目的:求出相机的内、外参数,以及畸变参数。
标定相机后通常是想做两件事:一个是由于每个镜头的畸变程度各不相同,通过相机标定可以校正这种镜头畸变矫正畸变,生成矫正后的图像;另一个是根据获得的图像重构三维场景。
摄像机标定过程,简单的可以简单的描述为通过标定板,可以得到n个对应的世界坐标三维点Xi和对应的图像坐标二维点xi,这些三维点到二维点的转换都可以通过上面提到的相机内参K,相机外参R和t,以及畸变参数D,经过一系列的矩阵变换得到。
import numpy as np
import cv2
import glob
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((7*10,3), np.float32)
objp[:,:2] = np.mgrid[0:10,0:7].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('./pic/14051293/*')
for fname in images:
print("current image :{:s}".format(fname))
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (10,7),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (10,7), corners2,ret)
#cv2.imshow('img',img)
#cv2.waitKey(0)
cv2.destroyAllWindows()
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
print(ret, mtx, dist, rvecs, tvecs)
mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
mean_error += error
print ("total error: ", mean_error/len(objpoints))
img2 = cv2.imread('biaodingjia_14230075_2.png')
h, w = img2.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
cv2.imwrite('矫正图.png', dst)
import cv2
import numpy as np
image_name = "you12"
img = cv2.imread('/home/deepglint/工作/竞走demo_2/标定/'+image_name+".bmp")
a =[]
b = []
def on_EVENT_LBUTTONDOWN(event, x, y,flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
xy = "%d,%d" % (x, y)
a.append(x)
b.append(y)
cv2.circle(img, (x, y), 1, (255, 0, 0), thickness=-1)
cv2.putText(img, xy, (x, y), cv2.FONT_HERSHEY_PLAIN,
1.0, (0, 0, 0), thickness=1)
cv2.imshow("image", img)
if event == cv2.EVENT_RBUTTONDOWN:
print("remove",a[-1],b[-1])
a.pop()
b.pop()
cv2.imshow("image", img)
cv2.namedWindow("image",0)
cv2.setMouseCallback("image", on_EVENT_LBUTTONDOWN)
cv2.resizeWindow("image", 1600, 900)
cv2.imshow("image", img)
cv2.waitKey(0)
print(a[0],b[0])
img[b[0]:b[1],a[0]:a[1],:] = 0 #注意是 行,列(y轴的,X轴)
cv2.imshow("image", img)
cv2.imwrite(image_name+"_point.png",img)
cv2.waitKey(0)
with open(image_name+".txt","w") as f:
f.write("[")
for i in range(len(a)):
if i != len(a)-1:
f.write("[["+str(a[i])+","+str(b[i])+"]],")
else:
f.write("[["+str(a[i])+","+str(b[i])+"]]")
f.write("]")
import numpy as np
import cv2
import glob
from numpy import *
import json
from itertools import chain
json_file = open("Camera_parameters.json",'w',encoding='utf-8')
print("----------------18559989-----------------")#2,zhong
id1 = 18559989
mtx_1 = np.array([[3.19018347e+03 ,0.00000000e+00 ,9.27630883e+02],
[0.00000000e+00 ,3.19295595e+03 ,5.47641169e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_1 = np.array([[-7.32795198e-01] ,[-5.34250952e-01] ,[8.76286125e-04] ,[5.17055837e-03],[1.34585035e+02]])
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.array([[0.8021,0.6890,1.0501],[0.4615,0.4000,1.2796],[-0.0358,-0.0188,1.6063],[0.8095,1.2067,1.0496],[0.4743,1.4983,1.2833],[-0.0189,1.9240,1.6090],[1.4159,1.2045,1.0442],[1.7622,1.4936,1.2601],[2.2697,1.9143,1.5651],[1.4183,0.6867,1.0532],[1.7558,0.3958,1.2844],[2.2515,-0.0242,1.6137],[0.8038,0.6895,0.6182],[0.4732,0.4085,0.3692],[0.0000,0.0000,0.0000],[0.8115,1.2007,0.6173],[0.4779,1.4798,0.3682],[0.0000,1.8878,0.0000],[1.4075,1.1952,0.6101],[1.7376,1.4692,0.3489],[2.2130,1.8652,-0.0369],[1.4108,0.6858,0.6171],[1.7346,0.3986,0.3662],[2.2048,-0.0176,0.0000]],dtype=np.float32)
points_1 = np.array([[[504,377]],[[627,311]],[[810,217]],[[437,385]],[[477,332]],[[532,264]],[[293,383]],[[181,326]],[[28,247]],[[355,374]],[[306,299]],[[230,182]],[[503,499]],[[623,568]],[[799,672]],[[437,503]],[[476,569]],[[530,658]],[[295,502]],[[186,572]],[[38,673]],[[355,497]],[[307,569]],[[229,680]]],dtype=np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Arrays to store object points and image points from all the images.
objpoints_1 = [] # 3d point in real world space
imgpoints_1 = [] # 2d points in image plane.
objpoints_1.append(objp*1000)
imgpoints_1.append(points_1)
imgpointssinglegroup_1 = imgpoints_1[0]
imgpointssinglegroup_undis_1 = imgpointssinglegroup_1
print(objpoints_1[0].shape,imgpointssinglegroup_undis_1.shape)
ret, rotation_1, translation_1 = cv2.solvePnP(objpoints_1[0], imgpointssinglegroup_undis_1, mtx_1, dist_1)
R_mtx_1 = cv2.Rodrigues(rotation_1)[0]
pmat_1 = np.column_stack((R_mtx_1,translation_1))
print("R: ",rotation_1)
print("Rmtx: ",R_mtx_1)
print("T: ",translation_1)
print("pmap:",pmat_1)
imgpoints2, _ = cv2.projectPoints(objpoints_1[0], rotation_1, translation_1, mtx_1, dist_1)
error = cv2.norm(imgpointssinglegroup_undis_1,imgpoints2, cv2.NORM_L2)/len(imgpoints2)
print("total error: ", error)
print("----------------19333252-----------------")#1,zuo
id2 = 19333252
mtx_2 = np.array([[3.25421978e+03 ,0.00000000e+00 ,8.85560418e+02],
[0.00000000e+00 ,3.25543566e+03 ,5.45877711e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_2 = np.array([[-8.16821482e-01] ,[7.07530775e+00] ,[-1.70896673e-03] ,[-9.39123422e-04] ,[-9.97045814e+01]])
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.array([[0.8021,0.6890,1.0501],[0.4615,0.4000,1.2796],[-0.0358,-0.0188,1.6063],[0.8095,1.2067,1.0496],[0.4743,1.4983,1.2833],[-0.0189,1.9240,1.6090],[1.4159,1.2045,1.0442],[1.7622,1.4936,1.2601],[2.2697,1.9143,1.5651],[1.4183,0.6867,1.0532],[1.7558,0.3958,1.2844],[2.2515,-0.0242,1.6137],[0.8038,0.6895,0.6182],[0.4732,0.4085,0.3692],[0.0000,0.0000,0.0000],[0.8115,1.2007,0.6173],[0.4779,1.4798,0.3682],[0.0000,1.8878,0.0000],[1.4075,1.1952,0.6101],[1.7376,1.4692,0.3489],[2.2130,1.8652,-0.0369],[1.4108,0.6858,0.6171],[1.7346,0.3986,0.3662],[2.2048,-0.0176,0.0000]],dtype=np.float32)
points_2 = np.array([[[759,384]],[[876,314]],[[1055,212]],[[723,392]],[[789,338]],[[881,267]],[[561,390]],[[458,334]],[[321,259]],[[590,380]],[[511,306]],[[390,191]],[[757,506]],[[871,578]],[[1041,689]],[[722,511]],[[787,578]],[[875,671]],[[562,511]],[[461,581]],[[327,681]],[[590,506]],[[510,577]],[[388,688]]],dtype=np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints_2 = [] # 2d points in image plane.
objpoints.append(objp*1000)
imgpoints_2.append(points_2)
imgpointssinglegroup_2 = imgpoints_2[0]
#imgpointssinglegroup_undis = cv2.undistortPoints(imgpointssinglegroup,mtx,dist)
imgpointssinglegroup_undis_2 = imgpointssinglegroup_2
print(objpoints[0].shape,imgpointssinglegroup_undis_2.shape)
ret, rotation_2, translation_2 = cv2.solvePnP(objpoints[0], imgpointssinglegroup_undis_2, mtx_2, dist_2)
R_mtx_2 = cv2.Rodrigues(rotation_2)[0]
pmat_2 = np.column_stack((R_mtx_2,translation_2))
print("R: ",rotation_2)
print("Rmtx: ",R_mtx_2)
print("T: ",translation_2)
imgpoints2, _ = cv2.projectPoints(objpoints[0], rotation_2, translation_2, mtx_2, dist_2)
error = cv2.norm(imgpointssinglegroup_undis_2,imgpoints2, cv2.NORM_L2)/len(imgpoints2)
print("total error: ", error)
print("----------------19356007-----------------")#0,you
id3 = 19356007
mtx_3 = np.array([[3.25369384e+03 ,0.00000000e+00 ,9.38636095e+02],
[0.00000000e+00 ,3.25583436e+03 ,5.70734462e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_3 = np.array([[-9.46398539e-01] ,[1.93700145e+01] ,[-4.01596453e-03] ,[-1.28586025e-03],[-5.20072643e+02]])
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.array([[0.8021,0.6890,1.0501],[0.4615,0.4000,1.2796],[-0.0358,-0.0188,1.6063],[0.8095,1.2067,1.0496],[0.4743,1.4983,1.2833],[-0.0189,1.9240,1.6090],[1.4159,1.2045,1.0442],[1.7622,1.4936,1.2601],[2.2697,1.9143,1.5651],[1.4183,0.6867,1.0532],[1.7558,0.3958,1.2844],[2.2515,-0.0242,1.6137],[0.8038,0.6895,0.6182],[0.4732,0.4085,0.3692],[0.0000,0.0000,0.0000],[0.8115,1.2007,0.6173],[0.4779,1.4798,0.3682],[0.0000,1.8878,0.0000],[1.4075,1.1952,0.6101],[1.7376,1.4692,0.3489],[2.2130,1.8652,-0.0369],[1.4108,0.6858,0.6171],[1.7346,0.3986,0.3662],[2.2048,-0.0176,0.0000]],dtype=np.float32)
points_3 = np.array([[[1019,340]],[[1118,267]],[[1271,161]],[[1013,350]],[[1097,293]],[[1212,219]],[[848,354]],[[760,300]],[[641,230]],[[847,343]],[[746,272]],[[594,168]],[[1019,461]],[[1119,531]],[[1268,638]],[[1012,465]],[[1099,530]],[[1213,621]],[[852,469]],[[767,540]],[[654,639]],[[849,465]],[[752,535]],[[605,644]]],dtype=np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints_3 = [] # 2d points in image plane.
objpoints.append(objp*1000)
imgpoints_3.append(points_3)
imgpointssinglegroup_3 = imgpoints_3[0]
#imgpointssinglegroup_undis = cv2.undistortPoints(imgpointssinglegroup,mtx,dist)
imgpointssinglegroup_undis_3 = imgpointssinglegroup_3
print(objpoints[0].shape,imgpointssinglegroup_undis_3.shape)
ret, rotation_3, translation_3 = cv2.solvePnP(objpoints[0], imgpointssinglegroup_undis_3, mtx_3, dist_3)
print(ret)
R_mtx_3 = cv2.Rodrigues(rotation_3)[0]
pmat_3 = np.column_stack((R_mtx_3,translation_3))
print("R: ",rotation_3)
print("Rmtx: ",R_mtx_3)
print("T: ",translation_3)
imgpoints2, _ = cv2.projectPoints(objpoints[0], rotation_3, translation_3, mtx_3, dist_3)
error = cv2.norm(imgpointssinglegroup_undis_3,imgpoints2, cv2.NORM_L2)/len(imgpoints2)
print("total error: ", error)
tmp = {"cameras":[{"id":str(id1),"kmat":list(chain.from_iterable(mtx_1.tolist())),"dvec":list(chain.from_iterable(dist_1)),"pmat":list(chain.from_iterable(pmat_1))},{"id":str(id2),"kmat":list(chain.from_iterable(mtx_2.tolist())),"dvec":list(chain.from_iterable(dist_2)),"pmat":list(chain.from_iterable(pmat_2))},{"id":str(id3),"kmat":list(chain.from_iterable(mtx_3.tolist())),"dvec":list(chain.from_iterable(dist_3)),"pmat":list(chain.from_iterable(pmat_3))}]}
str_content=json.dumps(tmp,indent=5)
json_file.write(str_content)
import numpy as np
import cv2
#import glob
from numpy import *
## image2,zhong,points1 ,image1,zuo,points,points2 ,image0,you,points3
# termination criteria
stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-10)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
mtx_1 = np.array([[3.19018347e+03 ,0.00000000e+00 ,9.27630883e+02],
[0.00000000e+00 ,3.19295595e+03 ,5.47641169e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_1 = np.array([[-7.32795198e-01] ,[-5.34250952e-01] ,[8.76286125e-04] ,[5.17055837e-03],[1.34585035e+02]])
mtx_2 = np.array([[3.25421978e+03 ,0.00000000e+00 ,8.85560418e+02],
[0.00000000e+00 ,3.25543566e+03 ,5.45877711e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_2 = np.array([[-8.16821482e-01] ,[7.07530775e+00] ,[-1.70896673e-03] ,[-9.39123422e-04] ,[-9.97045814e+01]])
mtx_3 = np.array([[3.25369384e+03 ,0.00000000e+00 ,9.38636095e+02],
[0.00000000e+00 ,3.25583436e+03 ,5.70734462e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_3 = np.array([[-9.46398539e-01] ,[1.93700145e+01] ,[-4.01596453e-03] ,[-1.28586025e-03],[-5.20072643e+02]])
objp = np.array([[0.8021,0.6890,1.0501],[0.4615,0.4000,1.2796],[-0.0358,-0.0188,1.6063],[0.8095,1.2067,1.0496],[0.4743,1.4983,1.2833],[-0.0189,1.9240,1.6090],[1.4159,1.2045,1.0442],[1.7622,1.4936,1.2601],[2.2697,1.9143,1.5651],[1.4183,0.6867,1.0532],[1.7558,0.3958,1.2844],[2.2515,-0.0242,1.6137],[0.8038,0.6895,0.6182],[0.4732,0.4085,0.3692],[0.0000,0.0000,0.0000],[0.8115,1.2007,0.6173],[0.4779,1.4798,0.3682],[0.0000,1.8878,0.0000],[1.4075,1.1952,0.6101],[1.7376,1.4692,0.3489],[2.2130,1.8652,-0.0369],[1.4108,0.6858,0.6171],[1.7346,0.3986,0.3662],[2.2048,-0.0176,0.0000]],dtype=np.float32)
points_3 = np.array([[[1635,330]],[[1729,260]],[[1870,158]],[[1629,339]],[[1708,284]],[[1814,213]],[[1471,339]],[[1384,284]],[[1264,212]],[[1469,329]],[[1371,257]],[[1217,150]],[[1636,449]],[[1729,520]],[[1866,629]],[[1631,454]],[[1709,521]],[[1814,611]],[[1474,455]],[[1391,525]],[[1276,621]],[[1472,452]],[[1377,521]],[[1229,630]]],dtype=np.float32)
points_2 = np.array([[[1045,387]],[[1158,327]],[[1323,243]],[[983,395]],[[1023,345]],[[1077,281]],[[845,390]],[[737,335]],[[586,259]],[[903,384]],[[853,313]],[[776,204]],[[1043,499]],[[1154,564]],[[1311,660]],[[982,502]],[[1021,563]],[[1073,649]],[[902,497]],[[852,561]],[[774,663]],[[846,500]],[[740,565]],[[595,659]]],dtype=np.float32)
points_1 = np.array([[[1368,390]],[[1478,325]],[[1640,232]],[[1333,398]],[[1396,346]],[[1481,280]],[[1177,394]],[[1075,338]],[[936,262]],[[1207,385]],[[1129,312]],[[1009,200]],[[1366,508]],[[1473,577]],[[1627,684]],[[1331,511]],[[1394,577]],[[1474,667]],[[1178,510]],[[1078,576]],[[941,672]],[[1205,505]],[[1128,572]],[[1007,679]]],dtype=np.float32)
objpoints = objp.reshape(1,objp.shape[0],-1)*1000
points_3 = points_3.reshape(1,points_3.shape[0],-1)
points_2 = points_2.reshape(1,points_2.shape[0],-1)
points_1 = points_1.reshape(1,points_1.shape[0],-1)
#M1, M2 = np.zeros((3,3)), np.zeros((3,3))
M1, M2 = np.array([[3876.38938,0,499.629394],[0,3876.38938,494.274083],[0,0,1]],dtype=np.float32), np.array([[4206.25198,0,1164.35265],[0,4206.25198,479.064956],[0,0,1]],dtype=np.float32)
d1, d2 = np.zeros((3,1)), np.zeros((3,1))
#ret= cv2.stereoCalibrate(objpoints, imgpoints_l,imgpoints_c,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC+cv2.CALIB_FIX_ASPECT_RATIO)
#ret= cv2.stereoCalibrate(objpoints, imgpoints_l,imgpoints_c,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_PRINCIPAL_POINT+cv2.CALIB_FIX_FOCAL_LENGTH+cv2.CALIB_USE_INTRINSIC_GUESS)
ret= cv2.stereoCalibrate(objpoints, points_3,points_2,mtx_3,dist_3,mtx_2,dist_2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC)
print("右左:",ret)
ret= cv2.stereoCalibrate(objpoints, points_3,points_1,mtx_3,dist_3,mtx_1,dist_1,(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC)
print("右中",ret)
ret= cv2.stereoCalibrate(objpoints, points_1,points_2,mtx_1,dist_1,mtx_2,dist_2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC)
print("中左",ret)
import numpy as np
import cv2
#import glob
from numpy import *
# termination criteria
stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-10)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.array([[0.8021,0.6890,1.0501],[0.4615,0.4000,1.2796],[-0.0358,-0.0188,1.6063],[0.8095,1.2067,1.0496],[0.4743,1.4983,1.2833],[-0.0189,1.9240,1.6090],[1.4159,1.2045,1.0442],[1.7622,1.4936,1.2601],[2.2697,1.9143,1.5651],[1.4183,0.6867,1.0532],[1.7558,0.3958,1.2844],[2.2515,-0.0242,1.6137],[0.8038,0.6895,0.6182],[0.4732,0.4085,0.3692],[0.0000,0.0000,0.0000],[0.8115,1.2007,0.6173],[0.4779,1.4798,0.3682],[0.0000,1.8878,0.0000],[1.4075,1.1952,0.6101],[1.7376,1.4692,0.3489],[2.2130,1.8652,-0.0369],[1.4108,0.6858,0.6171],[1.7346,0.3986,0.3662],[2.2048,-0.0176,0.0000]],dtype=np.float32)
corner_you = np.array([[[1019,340]],[[1118,267]],[[1271,161]],[[1013,350]],[[1097,293]],[[1212,219]],[[848,354]],[[760,300]],[[641,230]],[[847,343]],[[746,272]],[[594,168]],[[1019,461]],[[1119,531]],[[1268,638]],[[1012,465]],[[1099,530]],[[1213,621]],[[852,469]],[[767,540]],[[654,639]],[[849,465]],[[752,535]],[[605,644]]],dtype=np.float32)
corner_zhong = np.array([[[759,384]],[[876,314]],[[1055,212]],[[723,392]],[[789,338]],[[881,267]],[[561,390]],[[458,334]],[[321,259]],[[590,380]],[[511,306]],[[390,191]],[[757,506]],[[871,578]],[[1041,689]],[[722,511]],[[787,578]],[[875,671]],[[562,511]],[[461,581]],[[327,681]],[[590,506]],[[510,577]],[[388,688]]],dtype=np.float32)
# Arrays to store object points and image points from all the images.
corner_zuo = np.array([[[504,377]],[[627,311]],[[810,217]],[[437,385]],[[477,332]],[[532,264]],[[293,383]],[[181,326]],[[28,247]],[[355,374]],[[306,299]],[[230,182]],[[503,499]],[[623,568]],[[799,672]],[[437,503]],[[476,569]],[[530,658]],[[295,502]],[[186,572]],[[38,673]],[[355,497]],[[307,569]],[[229,680]]],dtype=np.float32)
objpoints = objp.reshape(1,objp.shape[0],-1)*1000
imgpoints_you = corner_you.reshape(1,corner_you.shape[0],-1)
imgpoints_zhong = corner_zhong.reshape(1,corner_zhong.shape[0],-1)
imgpoints_zuo = corner_zuo.reshape(1,corner_zuo.shape[0],-1)
#M1, M2 = np.zeros((3,3)), np.zeros((3,3))
M1, M2 = np.array([[3876.38938,0,499.629394],[0,3876.38938,494.274083],[0,0,1]],dtype=np.float32), np.array([[4206.25198,0,1164.35265],[0,4206.25198,479.064956],[0,0,1]],dtype=np.float32)
d1, d2 = np.zeros((3,1)), np.zeros((3,1))
#ret= cv2.stereoCalibrate(objpoints, imgpoints_l,imgpoints_c,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC+cv2.CALIB_FIX_ASPECT_RATIO)
#ret= cv2.stereoCalibrate(objpoints, imgpoints_l,imgpoints_c,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_FIX_PRINCIPAL_POINT+cv2.CALIB_FIX_FOCAL_LENGTH+cv2.CALIB_USE_INTRINSIC_GUESS)
ret= cv2.stereoCalibrate(objpoints, imgpoints_zuo,imgpoints_zhong,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_USE_INTRINSIC_GUESS)
print(ret)
print("------------------")
#1中 2 左 3右
mtx_1 = np.array([[3.19018347e+03 ,0.00000000e+00 ,9.27630883e+02],
[0.00000000e+00 ,3.19295595e+03 ,5.47641169e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_1 = np.array([[-7.32795198e-01] ,[-5.34250952e-01] ,[8.76286125e-04] ,[5.17055837e-03],[1.34585035e+02]])
mtx_2 = np.array([[3.25421978e+03 ,0.00000000e+00 ,8.85560418e+02],
[0.00000000e+00 ,3.25543566e+03 ,5.45877711e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_2 = np.array([[-8.16821482e-01] ,[7.07530775e+00] ,[-1.70896673e-03] ,[-9.39123422e-04] ,[-9.97045814e+01]])
mtx_3 = np.array([[3.25369384e+03 ,0.00000000e+00 ,9.38636095e+02],
[0.00000000e+00 ,3.25583436e+03 ,5.70734462e+02],
[0.00000000e+00 ,0.00000000e+00 ,1.00000000e+00]])
dist_3 = np.array([[-9.46398539e-01] ,[1.93700145e+01] ,[-4.01596453e-03] ,[-1.28586025e-03],[-5.20072643e+02]])
print("-------左右---------")
#ret2= cv2.stereoCalibrate(objpoints, imgpoints_zuo,imgpoints_zhong,mtx_2,dist_2,ret[3],ret[4],(1920,1080),None,None,None,None,cv2.CALIB_FIX_INTRINSIC)
#print(ret2)
ret2= cv2.stereoCalibrate(objpoints, imgpoints_zuo,imgpoints_you,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_USE_INTRINSIC_GUESS)
print(ret2)
print("--------右中--------")
ret3= cv2.stereoCalibrate(objpoints, imgpoints_you,imgpoints_zhong,M1,d1,M2,d2,(1920,1080),None,None,None,None,cv2.CALIB_USE_INTRINSIC_GUESS)
print(ret3)
import cv2
import numpy as np
point_2D1 = np.array([[17.4485,50], [709.7993,80]])
point_2D2 = np.array([[17.4382,50], [709.8409,80]])
Proj_Matrices1 = np.array([[1036.937, -22.8371, -28.3254, -5607.7], [23.0587, 1043.1, 3.1815, -633.4485], [650.4355, 373.6, -15.3504, -3706.5] ])
Proj_Matrices2 = np.array([ [1037.5, -6.9927, -10.0190, -4780.7], [6.9747, 1043.3, -5.8867, -731.9206], [644.7895, 383.4982, -3231.1,100]])
OutputArray = np.zeros((3,1))
Points_3D = cv2.triangulatePoints(Proj_Matrices1, Proj_Matrices2,point_2D1, point_2D2,OutputArray)
print(Points_3D)# 4维,w,x,y,z,真实的三维是x/w,y/w,z/w