【YOLOv8|YOLOv5】网络结构及代码纪录

【YOLOv8|YOLOv5】网络结构及代码纪录

【YOLOv8】网络结构

  • 先看YOLOv8s 的yaml文件:
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  #n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  #m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  #l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  #x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0s backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0s head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

描述比较清晰的YOLOv8网络结构
【YOLOv8|YOLOv5】网络结构及代码纪录_第1张图片
【YOLOv8|YOLOv5】网络结构及代码纪录_第2张图片

1.1 YOLOV8改进用于小目标检测(增加检测头)

一、解决问题

YOLO小目标检测效果不好的一个原因是因为小目标样本的尺寸较小,而yolov8的下采样倍数比较大,较深的特征图很难学习到小目标的特征信息,因此提出增加小目标检测层对较浅特征图与深特征图拼接后进行检测。加入小目标检测层,可以让网络更加关注小目标的检测,提高检测效果。这个方式的实现十分简单有效,只需要修改yolov8的模型文件yaml就可以增加小目标检测层,但是在增加检测层后,带来的问题就是计算量增加,导致推理检测速度降低。不过对于小目标,确实有很好的改善,修改yaml文件,需要修改特征融合网络。

二、YOLOv8改进方法

近期有朋友问到YOLOv8的改进方法,特此分享,增加小目标检测层的yaml文件前后对比。

yaml文件

改进前:

 
# Ultralytics YOLO , GPL-3.0 license
 
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # scales module repeats
width_multiple: 0.50  # scales convolution channels
 
# YOLOv8.0s backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0s head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 13
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 17 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 20 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

改进后:

 
# Ultralytics YOLO , GPL-3.0 license
 
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # scales module repeats
width_multiple: 0.50  # scales convolution channels
 
# YOLOv8.0s backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0s head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 13
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 17 (P3/8-small)
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 2], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [128]]  # 20 (P4/16-medium)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 15], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [256]]  # 20 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [512]]  # 23 (P5/32-large)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
 
  - [[18, 21, 24,27], 1, Detect, [nc]]  # Detect(P3, P4, P5)

改进前网络结构
【YOLOv8|YOLOv5】网络结构及代码纪录_第3张图片改进后网络结构:
【YOLOv8|YOLOv5】网络结构及代码纪录_第4张图片

【YOLOv5】网络结构

你可能感兴趣的:(目标检测,YOLO,目标跟踪,人工智能)