从 dgraph-io/dgraph 了解 etcd/raft 的使用 0x00

0. Intro

0.1 raft

raft 是一种分布式一致性算法.

简单来说, raft 的使用场景是 log replication.

关于分布式一致性算法, paxos, raft 等概念, 网上有大量的文章, 这里不再多做说明.

raft in go

比较成熟的 raft golang 实现有 hashicorp/raft 和 etcd/raft 两个版本.

二者分别被用在 hashicorp/consul 和 coreos/etcd 中, 均有大量生产环境的使用案例.

有很多优秀的开源项目使用二者之一, 比如

  • hashicorp/raft:
    • ipfs/ipfs-cluster
    • rqlite/rqlite
  • etcd/raft:
    • dgraph-io/dgraph
    • cockroachdb/cockroach

0.2 etcd/raft

相比而言, hashicorp/raft 比较容易上手; 而 etcd/raft 则基于简洁的抽象, 提供了更多可能性.

很多 etcd/raft 的使用者选择自行实现高度定制的网络传输层和持久化层等组件.

etcd/raft README 的 Usage 段落用了很大篇幅来描述user has a few responsibilities, 这些定制化的组件也就是在这里做文章

可以参考 cockroach 的开发博客 Scaling Raft . (文中 Multi-Raft 的链接已经失效, 这是因为 cockroach 的开发者发现这套实现很难从使用应用中解耦出来 etcd/issues/4932 )

TiDB 开发过程中遇到了类似的问题, 因此他们的底层存储 tikv 也选择参考 etcd/raft 的实现.

我们先简单介绍一下 etcd/raft .

raftpb

raftpb 使用 protobuf 定义了基础数据结构.

Node

这个接口定义基本说明了使用者能做哪些事情...

// Node represents a node in a raft cluster.
type Node interface {
    // Tick increments the internal logical clock for the Node by a single tick. Election
    // timeouts and heartbeat timeouts are in units of ticks.
    Tick()
    // Campaign causes the Node to transition to candidate state and start campaigning to become leader.
    Campaign(ctx context.Context) error
    // Propose proposes that data be appended to the log.
    Propose(ctx context.Context, data []byte) error
    // ProposeConfChange proposes config change.
    // At most one ConfChange can be in the process of going through consensus.
    // Application needs to call ApplyConfChange when applying EntryConfChange type entry.
    ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
    // Step advances the state machine using the given message. ctx.Err() will be returned, if any.
    Step(ctx context.Context, msg pb.Message) error

    // Ready returns a channel that returns the current point-in-time state.
    // Users of the Node must call Advance after retrieving the state returned by Ready.
    //
    // NOTE: No committed entries from the next Ready may be applied until all committed entries
    // and snapshots from the previous one have finished.
    Ready() <-chan Ready

    // Advance notifies the Node that the application has saved progress up to the last Ready.
    // It prepares the node to return the next available Ready.
    //
    // The application should generally call Advance after it applies the entries in last Ready.
    //
    // However, as an optimization, the application may call Advance while it is applying the
    // commands. For example. when the last Ready contains a snapshot, the application might take
    // a long time to apply the snapshot data. To continue receiving Ready without blocking raft
    // progress, it can call Advance before finishing applying the last ready.
    Advance()
    // ApplyConfChange applies config change to the local node.
    // Returns an opaque ConfState protobuf which must be recorded
    // in snapshots. Will never return nil; it returns a pointer only
    // to match MemoryStorage.Compact.
    ApplyConfChange(cc pb.ConfChange) *pb.ConfState

    // TransferLeadership attempts to transfer leadership to the given transferee.
    TransferLeadership(ctx context.Context, lead, transferee uint64)

    // ReadIndex request a read state. The read state will be set in the ready.
    // Read state has a read index. Once the application advances further than the read
    // index, any linearizable read requests issued before the read request can be
    // processed safely. The read state will have the same rctx attached.
    ReadIndex(ctx context.Context, rctx []byte) error

    // Status returns the current status of the raft state machine.
    Status() Status
    // ReportUnreachable reports the given node is not reachable for the last send.
    ReportUnreachable(id uint64)
    // ReportSnapshot reports the status of the sent snapshot.
    ReportSnapshot(id uint64, status SnapshotStatus)
    // Stop performs any necessary termination of the Node.
    Stop()
}
Storage

这是日志持久化层

但是实际上可以看到, 没有要求提供写的方法.

言下之意是 我只需要读, 至于该怎么存, 存哪里, 请在 Node.Ready() 中自行解决

// Storage is an interface that may be implemented by the application
// to retrieve log entries from storage.
//
// If any Storage method returns an error, the raft instance will
// become inoperable and refuse to participate in elections; the
// application is responsible for cleanup and recovery in this case.
type Storage interface {
    // InitialState returns the saved HardState and ConfState information.
    InitialState() (pb.HardState, pb.ConfState, error)
    // Entries returns a slice of log entries in the range [lo,hi).
    // MaxSize limits the total size of the log entries returned, but
    // Entries returns at least one entry if any.
    Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)
    // Term returns the term of entry i, which must be in the range
    // [FirstIndex()-1, LastIndex()]. The term of the entry before
    // FirstIndex is retained for matching purposes even though the
    // rest of that entry may not be available.
    Term(i uint64) (uint64, error)
    // LastIndex returns the index of the last entry in the log.
    LastIndex() (uint64, error)
    // FirstIndex returns the index of the first log entry that is
    // possibly available via Entries (older entries have been incorporated
    // into the latest Snapshot; if storage only contains the dummy entry the
    // first log entry is not available).
    FirstIndex() (uint64, error)
    // Snapshot returns the most recent snapshot.
    // If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,
    // so raft state machine could know that Storage needs some time to prepare
    // snapshot and call Snapshot later.
    Snapshot() (pb.Snapshot, error)
}
网络传输

etcd/raft 没有提供任何网络传输层的接口定义.

与日志的持久化类似, 我只告诉你哪些 message 需要发出, 怎么发, 发往哪里请自行解决 .

总得有一些开箱即用的东西...

对于日志持久化层, etcd/raft 提供了一个内存版本的 Storage 实现 MemoryStorage , 通过 wal 落盘.

而 rafthttp 则提供了节点寻址和基于 http 的网络传输能力...

可以参考一下 etcd 官方提供的 demo .

港真, 我在用 hashicorp/raft 写了一些基本能用的小玩具之后看这个 demo, 还是把我绕晕了.

0.3 dgraph

dgraph 是一款使用 go 语言开发的分布式图数据库.

dgraph zero

zero 节点用于管理 dgraph 集群, 维护成员信息, 数据的 sharding 和 rebalancing.

我们借着阅读 zero 的实现代码来看一看 etcd/raft 的使用, 以及它的周边组件的实现方式.

你可能感兴趣的:(从 dgraph-io/dgraph 了解 etcd/raft 的使用 0x00)