- 算力网络技术创新驱动生态协同发展
智能计算研究中心
其他
内容概要算力网络作为数字经济发展的核心基础设施,正经历从单一性能提升向体系化技术协同的范式转变。当前技术创新主要聚焦三大维度:在架构层面,通过异构计算、量子计算与神经形态计算的融合,突破传统芯片制程限制;在调度层面,依托分布式计算与流批处理技术,实现跨边缘节点、工业互联网平台与超算中心的资源动态编排;在生态层面,围绕能效管理、安全标准与算法优化构建全链条能力,支撑金融风险评估、基因测序等高复杂度场
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- 基于PySide6与PyCatia的CATIA几何体智能重命名工具开发实践
Python×CATIA工业智造
python开发语言CATIA二次开发
一、工具概述本工具基于CATIAV5/V6的二次开发接口,结合PySide6图形界面框架与PyCatia自动化库,实现了三大核心功能模块:几何体前缀批量添加、后缀动态追加、智能文本替换。该工具显著提升了工程师在大型零件体设计中的几何体命名管理效率,解决了传统手动操作易出错、耗时长的问题。二、技术架构解析1.分层架构设计classStats(QMainWindow):def__init__(self
- 1章5节:大模型术语解读与从生成到推理的演进
DAT|R科学与人工智能
人工智能
在人工智能的浩瀚宇宙中,大模型正以前所未有的速度演进,推动着科技变革的新浪潮。从多模态到通用模型,再到行业模型,人工智能的边界不断拓展,为各行各业带来了全新的机遇与挑战。本篇文章将深入剖析大模型相关的核心术语,探讨其内涵、应用及发展趋势,并回顾大模型从生成到推理的演进历程,解析全球科技巨头与国内前沿企业在这一领域的竞争与创新。让我们一同探索大模型的演进脉络,把握智能时代的发展脉搏。一、剖析大模型相
- 密码学:网络安全的基石与未来
安全
在数字化时代,网络安全已成为全球关注的焦点。无论是个人隐私的保护,还是国家关键基础设施的安全,都离不开密码学这一核心技术。密码学不仅是信息安全的基石,更是现代社会中数据保密性、完整性和可用性的守护者。本文将从密码学的基本原理出发,结合最新技术发展,探讨其在网络安全中的核心作用。一、密码学的基本原理密码学的核心目标是通过数学方法保护信息的机密性、完整性和真实性。它主要分为两大领域:对称加密和非对称加
- OA协同办公软件为守护企业数据安全出的这套方案
oa协同软件即时通讯数据安全
在信息化时代,安全性是每个企业都绕不开的话题。企业酷信通过多重安全防护,让你在处理日常业务时无需为信息安全担忧。这里没有复杂的技术术语,只有实实在在的保护。登录安全:给每次登录加把“锁”企业酷信不仅提供传统的用户名和密码保护,还结合多因子认证和图形校验码,给每一次登录都加了几把“锁”。更重要的是,采用了先进的RSA和MD5算法加密,确保即使密码泄露,数据依然安全。业务安全:小细节,大保障日常的业务
- 外包项目的三大来源渠道及注意事项
后端
外包项目的三大来源渠道及注意事项在上一篇文章中,我们介绍了什么是外包以及外包的基本模式。今天,让我们深入探讨外包项目的主要来源渠道及其特点。一、朋友渠道特点:关系基础公司小伙伴推荐熟人介绍客户邀请合作优势:信任度高沟通成本低合作较为顺畅风险提示:避免因私人关系影响专业判断需要明确划分公私界限保持适当的业务距离二、家人渠道特点:亲朋帮忙情感因素强责任感较重注意事项:优势信任度最高沟通零障碍合作意愿强
- 五大股票金融数据API接口推荐:从实时行情到历史数据全覆盖
CryptoRzz
金融
摘要:本文将介绍五大主流的股票金融数据API接口,涵盖实时行情、历史数据、技术指标等功能,帮助开发者快速构建金融数据应用。(本文由deepseek生成)一、StockTVAPI1.核心优势全球覆盖:支持印度、美国、日本、韩国等10+国家的股票市场实时性强:提供WebSocket实时数据推送数据全面:包含股票、指数、期货、外汇、加密货币易于集成:提供多种语言的SDK和详细文档2.主要功能实时行情:支
- 【MYSQL学习】MySQL索引:删除索引的5大绝招你GET到了吗?
墨瑾轩
MySql入门~精通mysql学习数据库
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣MySQL索引:删除索引的5大绝招你GET到了吗?引言❓在数据库操作中,索引是一个非常重要的概念。合理的索引设计可以显著提高查询性能,而不合理的索引则可能导致性能下降。但你知道如何有效地删除索引吗?今天,我们就来一场深入浅出的探索之旅,带你了解删除索引的5大绝
- 【超全总结】JMeter vs K6 vs Locust,性能测试工具终极对比!
软件测试jmeter测试工具
引言在现代软件开发中,性能测试是保障系统稳定性和高并发能力的关键环节。然而,面对市面上众多的性能测试工具,我们该如何选择?今天,我们将对JMeter、K6、Locust进行全面对比,帮你找到最适合你的工具!1.工具概览工具语言适用场景优点缺点JMeterJava传统性能测试、WebAPI测试功能强大、插件丰富、支持GUI学习曲线陡峭,资源消耗大K6JavaScript现代DevOps、CI/CD集
- AI 大模型应用数据中心的数据分析架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据分析架构》关键词:数据中心、AI大模型、数据分析、架构设计、应用实践摘要:本文深入探讨了AI大模型在数据中心数据分析架构中的应用,从数据中心背景、AI大模型架构与技术、数据处理与分析技术、AI大模型应用与实践等多个方面,全面解析了AI大模型如何助力数据中心实现高效数据分析和智能处理,为读者提供了系统的理论指导和实际案例分析。第一部分:数据中心背景与AI大模型概述第1章
- 入门到入土,Java学习 day17(Lambda表达式,集合进阶)
慕容魏
java学习python
publicstaticStringtoString(数组)把数组拼接成一个字符串publicstaticintbinarySearch(数组,查找的元素)二分查找法找元素publicstaticint[]copyOf(原数组,新数组长度)拷贝数组长度小就拷贝几个,长度一样完全拷贝,长度大后面补默认值publicstaticint[]copyOfRange(原数组,起始索引,结束索引)拷贝数组(指
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- HR SaaS平台排行榜:细数2025年中国最具商业价值的十大HR SaaS平台
weixin_54980836
大数据人工智能
在当今竞争激烈且瞬息万变的商业环境中,企业数字化转型已不再是可选项,而是生存与发展的必经之路。人力资源管理作为企业运营的核心支柱之一,正经历着前所未有的深刻变革。传统的HR管理模式已逐渐暴露出效率低下、数据整合困难、决策支持不足等问题,难以满足现代企业对精准、高效、智能人力资源管理的需求。在此背景下,HRSaaS系统应运而生,成为企业优化薪酬管理、提升人力资源效率、实现数字化转型的关键工具。本文将
- 为什么Redis对大 Key(Large Key)和大对象不友好?怎样优化?
风一样的树懒
redis数据库缓存
你好,我是风一样的树懒,一个工作十多年的后端专家,曾就职京东、阿里等多家互联网头部企业。公众号“吴计可师”,已经更新了近百篇高质量的面试相关文章,喜欢的朋友欢迎关注点赞Redis对大Key(LargeKey)和大对象不友好,主要源于其内存管理模型、单线程架构和数据结构特性。以下从性能影响、内存管理、集群限制三个维度解析原因,并提供优化方案:一、Redis对大Key不友好的核心原因1.性能瓶颈单线程
- 国家地理信息公共服务平台的天地图
gys9895
百度地图js
文章目录一、国家地理信息公共服务平台的天地图二、地图转换1.GIS数据格式坐标转换(地球坐标WGS84、GCJ-02、火星坐标、百度坐标BD-09、国家大地坐标系CGCS2000)2.读入数据总结一、国家地理信息公共服务平台的天地图三大地图付费后,仍可用的免费商用地图APIFailedtoresolveloader:sass-loader如果是本地测试,那么对应的白名单设置为null第一步,在Vu
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- 一文搞懂MCU和SoC的核心差异:从架构到应用场景全解析
Electron-er
单片机架构嵌入式硬件
目录引言一、从“芯片大脑”看本质:架构设计的哲学差异1.MCU:单一任务的执行专家2.SoC:系统级集成的超级平台二、实战对比:六大维度拆解差异1.性能指标对比2.开发模式对比三、选型指南:如何选择MCU或SoC?1.选择MCU的场景2.选择SoC的场景四、技术演进:MCU与SoC的融合趋势1.MCU的进化方向2.SoC的突破方向五、开发者避坑指南结语标签:MCUvsSOC、嵌入式系统、芯片选型、
- 一文吃透C++数组:概念与操作大揭秘
大雨淅淅
C++开发数据库c++开发语言
目录一、C++数组初印象二、C++数组概念剖析2.1数组定义与本质2.2数组声明与初始化方式2.2.1声明2.2.2初始化2.3数组元素访问三、C++数组操作全解析3.1遍历数组3.1.1for循环遍历3.1.2范围for循环遍历3.2修改数组元素3.3获取数组大小3.4多维数组操作3.4.1二维数组3.4.2.多维数组拓展3.5数组作为函数参数3.5.1传数组名3.5.2函数原型声明四、C++数
- 《TypeScript 高级类型实战指南:解决真实项目的 7 大痛点》
前端极客探险家
typescript前端vue.jsreact.js
目录标题本文解决的问题:一、表单系统:深度类型约束(可直接用于AntDesign表单)痛点:表单校验逻辑与TS类型脱节二、API响应:自动解包层叠类型(Axios拦截器整合)痛点:后端返回结构嵌套导致类型冗余三、ReduxToolkit:Action类型自动工厂痛点:手写ActionType容易出错四、组件Prop:动态约束联合类型(Vue/React通用)痛点:多形态组件的Prop类型难以维护五
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- 定了!粉丝破800w的陈雷老师确认出席创客匠人5000人的“全球创始人IP领袖高峰论坛”
创小匠
tcp/ip大数据人工智能
正式官宣!全网粉丝800W+、中医学博士——陈雷,确认应邀参加创客匠人5000人“全球创始人IP领袖高峰论坛”,共襄知识服务领域的年度盛宴!由创客匠人发起的“全球创始人IP领袖高峰论坛”将在2024年12月26日-28日在厦门市国际博览会议中心隆重举行。大会邀请到众多行业内的顶尖大咖和领袖人物亲临现场,围绕“IP、趋势、战略、创新、增长”五大关键词,分享他们的宝贵经验和独到见解。这将是2024年底
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 做亚马逊、temu、速卖通、希音自养号采购砍单率过高需要怎么解决
刘哥测评技术zcwz626
经验分享网络协议网络安全服务器
做无货源模式的卖家越来越多,自养买家号采购时遭遇大砍单是一个普遍而棘手的问题。为了避免这一问题,需要从技术环境搭建、账号权重养成以及下单技巧等多个方面进行系统化操作。以下是一些具体的建议和策略:一、技术环境搭建:确保账号独立性1.硬件隔离:使用独立设备或采用云服务器等隔离技术,确保每个账号拥有唯一的硬件标识,如IMEI、MAC地址等。在同一设备上登录多个账号要确保每个账号都是独立的环境,以防止硬件
- 线路板打样中的PCB拼版技术如何为中小企业节省30%以上成本?
捷配科技
制造pcb工艺捷配
线路板打样和批量生产的成本控制对中小企业来说非常关键,本文将解析PCB拼版的五大核心价值,揭示中小企业在SMT贴片环节的降本秘诀。一、破解线路板打样的成本困局中小企业在小批量生产时常面临两难选择:单独加工导致设备利用率低下,而传统拼版方案又存在设计缺陷。二、PCB拼版技术的五大降本优势1.设备利用效率倍增通过二合一或四合一拼版设计,SMT产线单次印刷可完成多板加工。实测数据显示,采用V-CUT拼版
- LibreTranslate的本地部署与应用服务开发
一望无际的大草原
高级数据应用后端人工智能大模型翻译源码部署
最近在关注大模型预训练文章和应用服务开发,有时候需要借助翻译工具,使用起来都不太方便,就找了一下类似的常见语言的翻译方案,无意中看到一个开源翻译方案(即LibreTranslate),对于通用和计算机类内容的翻译效果还是不错的,因此就对开源翻译代码进行了本地部署和应用服务开发及测试。主要对源码的启动参数、api服务、认证服务和访问权限等内容进行了补充完善,并将依赖的翻译argos-translat
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro