Googleplaystore数据分析

import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics # 设置GPU使用方式 # 获取GPU列表 gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # 设置GPU为增长式占用 for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: # 打印异常 print(e) (xs, ys),_ = datasets.mnist.load_data() print('datasets:', xs.shape, ys.shape, xs.min(), xs.max()) batch_size = 32 xs = tf.convert_to_tensor(xs, dtype=tf.float32) / 255. #python的数据类型转换成TensorFlow可用的tensor数据类型,接受数组,np等 db = tf.data.Dataset.from_tensor_slices((xs,ys)) #加载数据集 db = db.batch(batch_size).repeat(30) #一次性喂batch_size个数据,repeat设置迭代多少次 固定:map,batch,repeat model = Sequential([layers.Dense(256, activation='relu'), #tf.layers.dense(inputs,units,activation) 输入,输出,激活函数 layers.Dense(128, activation='relu'), layers.Dense(10)]) model.build(input_shape=(4, 28*28)) model.summary() #输入各层参数情况 optimizer = optimizers.SGD(lr=0.01) acc_meter = metrics.Accuracy() for step, (x,y) in enumerate(db): with tf.GradientTape() as tape: # 打平操作,[b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28*28)) # Step1. 得到模型输出output [b, 784] => [b, 10] out = model(x) # [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) #结果用one-hot显示 # 计算差的平方和,[b, 10] loss = tf.square(out-y_onehot) # 计算每个样本的平均误差,[b] loss = tf.reduce_sum(loss) / x.shape[0] #损失函数 acc_meter.update_state(tf.argmax(out, axis=1), y) #out是预测结果,tf.argmax(out,axis=1) 返回最大行(axis=1) 的 索引 #update是更新数据,reset_states是清楚数据 grads = tape.gradient(loss, model.trainable_variables) #求梯度 optimizer.apply_gradients(zip(grads, model.trainable_variables)) #把梯度更新到变量上 if step % 200==0: print(step, 'loss:', float(loss), 'acc:', acc_meter.result().numpy()) acc_meter.reset_states() #每一轮都会重新更新一轮数据

你可能感兴趣的:(Googleplaystore数据分析)