【算法与数据结构】222、LeetCode完全二叉树的节点个数

文章目录

  • 一、题目
  • 二、一般遍历解法
  • 三、利用完全二叉树性质
  • 四、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、题目

【算法与数据结构】222、LeetCode完全二叉树的节点个数_第1张图片

二、一般遍历解法

  思路分析:利用层序遍历,然后用num++记录节点数量。其他的例如递归法和迭代法也是如此。
  层序遍历程序如下

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        queue<TreeNode*> que;
        que.push(root);
        int num = 0;        // 节点数量
        while (!que.empty()) {
            int size = que.size();  // size必须固定, que.size()是不断变化的
            for (int i = 0; i < size; ++i) {               
                TreeNode* node = que.front();
                que.pop();
                num++;
                if (node->left) que.push(node->left);   // 空节点不入队
                if (node->right) que.push(node->right);
            }
        }
        return num;
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
      递归程序如下(这应该是最精简的版本了):
class Solution2 {
public:
    int countNodes(TreeNode* root) {
        return root == NULL ? 0 : countNodes(root->left) + countNodes(root->right) + 1;
    }
};

三、利用完全二叉树性质

  思路分析:完全二叉树具有一个特性,假设它的深度为K,它的节点个数在 [ 2 K − 1 − 1 , 2 K − 1 ] [2^{K-1}-1, 2^K-1] [2K11,2K1]之间,意味着它只有两种情况,一种是满二叉树,一种是最后一层叶子节点没有满。对于情况一可以用 2 K − 1 2^K-1 2K1来计算,对于情况二分别递归其左子树和右子树,递归到一定深度一定有左子树或者右子树为满二叉树,然后按照情况一来计算。那么满二叉树的最左边节点和最右边节点的深度一定是相等的,依据这个特性判断子树是否为满二叉树。
【算法与数据结构】222、LeetCode完全二叉树的节点个数_第2张图片
递归程序当中,我们要确定三个步骤,1、输入参数,返回值 2、递归终止条件 3、单层递归逻辑输入参数为中间节点,返回值为左子树的节点数量+右子树节点数量+1(+1是加上中间节点)。当节点为空时,递归终止,返回0。每次递归我们都要计算最左/右边节点深度,然后判断二者是否相等,如果相等则是满二叉树,返回 2 K − 1 2^K-1 2K1,K为深度。程序当中使用了左移运算符,因为运算符的优先级问题,记得加括号。左移运算符是二进制运算,计算机计算的更快。
  程序如下

class Solution3 {
public:
    // 利用完全二叉树的性质,递归法
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int Ldepth = 0, Rdepth = 0;
        while (left) {      // 递归左子树
            left = left->left;
            Ldepth++;
        }
        while (right) {     // 递归右子树
            right = right->right;
            Rdepth++;
        }
        if (Ldepth == Rdepth) {
            return (2 << Ldepth) - 1;    // <<为左移运算符(位运算符),相当于2*leftDepth,但二进制运算计算机算的更快
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

四、完整代码

# include 
# include 
# include 
# include 
# include 
using namespace std;

// 树节点定义
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    // 层序遍历法
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        queue<TreeNode*> que;
        que.push(root);
        int num = 0;        // 节点数量
        while (!que.empty()) {
            int size = que.size();  // size必须固定, que.size()是不断变化的
            for (int i = 0; i < size; ++i) {               
                TreeNode* node = que.front();
                que.pop();
                num++;
                if (node->left) que.push(node->left);   // 空节点不入队
                if (node->right) que.push(node->right);
            }
        }
        return num;
    }
};

class Solution2 {
public:
    int countNodes(TreeNode* root) {
        return root == NULL ? 0 : countNodes(root->left) + countNodes(root->right) + 1;
    }
};

class Solution3 {
public:
    // 利用完全二叉树的性质,递归法
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int Ldepth = 0, Rdepth = 0;
        while (left) {      // 递归左子树
            left = left->left;
            Ldepth++;
        }
        while (right) {     // 递归右子树
            right = right->right;
            Rdepth++;
        }
        if (Ldepth == Rdepth) {
            return (2 << Ldepth) - 1;    // <<为左移运算符(位运算符),相当于2*leftDepth,但二进制运算计算机算的更快
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

void my_print(vector <string>& v, string msg)
{
    cout << msg << endl;
    for (vector<string>::iterator it = v.begin(); it != v.end(); it++) {
        cout << *it << "  ";
    }
    cout << endl;
}

void my_print2(vector<vector<int>>& v, string str) {
    cout << str << endl;
    for (vector<vector<int>>::iterator vit = v.begin(); vit < v.end(); ++vit) {
        for (vector<int>::iterator it = (*vit).begin(); it < (*vit).end(); ++it) {
            cout << *it << ' ';
        }
        cout << endl;
    }
}

// 前序遍历迭代法创建二叉树,每次迭代将容器首元素弹出(弹出代码还可以再优化)
void Tree_Generator(vector<string>& t, TreeNode*& node) {
    if (t[0] == "NULL" || !t.size()) return;    // 退出条件
    else {
        node = new TreeNode(stoi(t[0].c_str()));    // 中
        t.assign(t.begin() + 1, t.end());
        Tree_Generator(t, node->left);              // 左
        t.assign(t.begin() + 1, t.end());
        Tree_Generator(t, node->right);             // 右
    }
}

// 层序遍历
vector<vector<int>> levelOrder(TreeNode* root) {
    queue<TreeNode*> que;
    if (root != NULL) que.push(root);
    vector<vector<int>> result;
    while (!que.empty()) {
        int size = que.size();  // size必须固定, que.size()是不断变化的
        vector<int> vec;
        for (int i = 0; i < size; ++i) {
            TreeNode* node = que.front();
            que.pop();
            vec.push_back(node->val);
            if (node->left) que.push(node->left);   // 空节点不入队
            if (node->right) que.push(node->right);
        }
        result.push_back(vec);
    }
    return result;
}

int main()
{
    vector<string> t = { "1", "2", "4", "NULL", "NULL", "5", "NULL", "NULL", "3", "6", "NULL", "NULL", "NULL"};   // 前序遍历
    my_print(t, "目标树");
    TreeNode* root = new TreeNode();
    Tree_Generator(t, root);
    vector<vector<int>> tree = levelOrder(root);
    my_print2(tree, "目标树:");
    Solution2 s1;
    int result = s1.countNodes(root);
    cout << "节点数量为:" << result << endl;
    system("pause");
    return 0;
}

end

你可能感兴趣的:(算法,算法)