Leetcode 1658. Minimum Operations to Reduce X to Zero

文章作者:Tyan
博客:noahsnail.com  |  CSDN  | 

1. Description

Minimum Operations to Reduce X to Zero

2. Solution

解析:Version 1,这道题跟Leetcode 560的解法很像,首先计算数组的总和total,如果total < x,则无论如何也不会将x减到0,如果total = x,则需要移除所有元素才能将x变为0,由于x一直是从最左或最右移除,因此问题可以变为:找到一个最大连续子数组,使得其和为total - x,这样可以保证剩下的元素之和等于x,个数最少,剩下元素位于左右子数组的左右两侧。使用前缀和方法,依次求数组的前缀和,并将前缀和以及当前索引位置记录到字典stat中,要寻找的连续子数组和为target,如果当前前缀和减去target位于字典中,则计算子数组的长度并更新最大子数组长度maximum,注意如果当前前缀和刚好等于target,此时寻找的差为0,为了保证正确的子数组长度,stat[0] = -1,最后,如果maximum的值一直没更新,则说明没找满足条件的子数组,此时应返回-1,否则,返回n - maximum。Version 2移除了数组和与x的比较,效率要差一些。

  • Version 1
class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        n = len(nums)
        total = sum(nums)
        if total < x:
            return -1
        if total == x:
            return n
        target = total - x
        prefix = 0
        stat = {}
        stat[0] = -1
        maximum = -1
        for i in range(n):
            prefix += nums[i]
            stat[prefix] = i
            if prefix - target in stat:
                maximum = max(maximum, i - stat[prefix - target])
        if maximum == -1:
            return -1
        return n - maximum
  • Version 2
class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        n = len(nums)
        target = sum(nums) - x
        prefix = 0
        stat = {}
        stat[0] = -1
        maximum = -1
        for i in range(n):
            prefix += nums[i]
            stat[prefix] = i
            if prefix - target in stat:
                maximum = max(maximum, i - stat[prefix - target])
        if maximum == -1:
            return -1
        return n - maximum

Reference

  1. https://leetcode.com/problems/minimum-operations-to-reduce-x-to-zero/

你可能感兴趣的:(Leetcode 1658. Minimum Operations to Reduce X to Zero)