二叉树的基本概念

二叉树的基本概念

  • 一、树概念及结构
    • 1.1树的概念
    • 1.2 树的相关概念
  • 二、二叉树概念及结构
    • 2.1概念
    • 2.2 特殊的二叉树
    • 2.3 二叉树的性质

一、树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合
Ti(1<= i <= m)又是一棵结构与树类似的子树。
每棵子树的根结点有且只有一个前驱,可以有0个或多个后继因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 树的相关概念

二叉树的基本概念_第1张图片

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

二、二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从下图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    二叉树的基本概念_第2张图片
    注意:对于任意的二叉树都是由以下几种情况复合而成的:
    二叉树的基本概念_第3张图片

2.2 特殊的二叉树

1、满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
2、完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
二叉树的基本概念_第4张图片

2.3 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i - 1) 个结点。
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h - 1 。
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n , 度为2的分支结点个数为m ,则有 n=m +1。
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度h = log以2为底,n+1为对数。
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点。
若2i+1=n否则无左孩子。
.若2i+2=n否则无右孩子。

你可能感兴趣的:(数据结构与算法笔记,数据结构,算法,二叉树)