YOLOV5是一款强大的模型,不仅包含分类、检测、分割(全能选手,谢谢大佬),而且在模型、数据增强、先验框和真实框的匹配、损失函数都有极大的改进。在推理速度和COCOmAP上也比之前的模型有提高。训练策略上也增加一些新的技巧,比如多尺度、rectangle、用遗传算法搜寻超参数。
--datasets
-- imags
-- train
-- val
-- test
-- labels
-- train
-- val
-- test
在datasets文件夹分别存放imags和labels文件夹,imags文件夹存放图片信息(.jpg)。labels文件夹存放对应图片的标签信息(.txt),标签信息包含目标物体的类别和真实框的坐标(cx,cy,w,h),这些坐标都是归一化后的数据。data/coco128.yaml内存储数据地址和类别信息,用于训练需要。
train_loader, dataset = create_dataloader(train_path,
imgsz,
batch_size // WORLD_SIZE,
gs,
single_cls,
hyp=hyp,
augment=True,
cache=None if opt.cache == 'val' else opt.cache,
rect=opt.rect,
rank=LOCAL_RANK,
workers=workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr('train: '),
shuffle=True,
seed=opt.seed)
检测流程
# YOLOv5 by Ultralytics, GPL-3.0 license
"""
AttributeError: partially initialized module 'cv2' has no attribute 'gapi_wip_gst_GStreamerPipeline' (most likely due to a circular import)
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve() # '/Users/liushuang/Downloads/yolov5-master/detect.py' 当前文件路径
ROOT = FILE.parents[0] # '/Users/liushuang/Downloads/yolov5-master' YOLOv5 root directory 当前文件路径的父目录
if str(ROOT) not in sys.path: # 模块查询路径
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative 得到相对路径 '.'
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
source = str(source) # 'data/images'
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) # suffix 后缀 '.jpg' True 是视频或者图片?
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) # 网址
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) # 摄像头
screenshot = source.lower().startswith('screen') # False
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run ; PosixPath('runs/detect/exp3')
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device) # YOLOv5 2023-4-15 Python-3.10.10 torch-2.0.0 CPU
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) # 选择模型后端框架 YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs
stride, names, pt = model.stride, model.names, model.pt # 32, cls_names, 模型是否是pytorch True
imgsz = check_img_size(imgsz, s=stride) # check image size [640, 640] 图片尺寸是否是32的倍数
# Dataloader
bs = 1 # batch_size
if webcam: # 摄像头
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else: # 文件夹
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup imgsz = (1, 3, 640, 640)
seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) # 0,[],(,, )
for path, im, im0s, vid_cap, s in dataset: # /Users/liushuang/Downloads/yolov5-master/data/images/bus.jpg;None; image 1/2 /Users/liushuang/Downloads/yolov5-master/data/images/bus.jpg:
with dt[0]: # 这个是干啥用的?
im = torch.from_numpy(im).to(model.device) # torch.Size([3, 384, 640])
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 float32-->float16
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim torch.Size([1, 3, 384, 640])
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False # False
pred = model(im, augment=augment, visualize=visualize) # pred[0].shape: torch.Size([1, 15120, 85]) ; pred[1][0]:torch.Size([1, 3, 48, 80, 85]);;;pred[1][1]:torch.Size([1, 3, 24, 40, 85]);;;pred[1][0]:torch.Size([1, 3, 12, 20, 85]);;;
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # torch.Size([4, 4(boxes)+1(conf)+1(cls)])
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1 # 记录观测到的物体
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) # path,(720, 1280, 3),0
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg #'runs/detect/exp3/zidane.jpg'
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt # 'runs/detect/exp3/labels/zidane'
s += '%gx%g ' % im.shape[2:] # print string # s:image 2/2 /Users/liushuang/Downloads/yolov5-master/data/images/zidane.jpg ; im.shape[2:] : '384x640 '
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh # (720, 1280, 3) --> tensor([1280, 720, 1280, 720])
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) # 绘图工具
if len(det):
# Rescale boxes from img_size to im0 size 把检测到的框映射到原图上
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # im.shape[2:]:torch.Size([384, 640]) ; im0.shape: (720, 1280, 3)
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results 保存结果
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh box在原图上的相对位置
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image 画到原图上
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') # 'person 0.88'
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # (684, 416, 3)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image dt是检测耗时,seen记录检测的物体数量
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL') # 权重
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') # 检测对象
parser.add_argument('--data', type=str, default=ROOT / 'data/my_data.yaml', help='(optional) dataset.yaml path') # 数据
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') # 置信度阈值
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') # IOU阈值
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') # 最大检测数量/每张图片
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 运算设备
parser.add_argument('--view-img', action='store_true', help='show results') # 展示预测结果
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') # 保存labels
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') # 抠图
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') # 从所有类别中选去感兴趣的个别类
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference') # 数据增强
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models') # 更新
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') # 保存路径
parser.add_argument('--name', default='exp', help='save results to project/name') # 保存路径的子文件夹
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') # 新预测文件
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') # 线条宽度
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') # 半,精度
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') # 分布式训练
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') # 取祯间隔时长
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand [640]-->[640,640]
print_args(vars(opt)) # 打印所有的参数
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop')) # 检测requirements.txt里面的包有没有成功安装。
run(**vars(opt))
if __name__ == '__main__':
opt = parse_opt() # 解析命令行参数
main(opt)